
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MadDroid: Characterizing and Detecting Devious Ad Contents
for Android Apps

Anonymous Author(s)

ABSTRACT
Advertisement drives the economy of the mobile app ecosystem. As
a key component in the mobile ad business model, mobile ad con-
tent has been overlooked by the research community, which poses
a number of threats, e.g., propagating malware and undesirable con-
tents. To understand the practice of these devious ad behaviors, we
perform a large-scale study on the app contents harvested through
automated app testing. In this work, we first provide a compre-
hensive categorization of devious ad contents, including five kinds
of behaviors belonging to two categories: ad loading content and
ad clicking content. Then, we propose MadDroid, a framework for
automated detection of devious ad contents. MadDroid leverages
an automated app testing framework with a sophisticated ad view
exploration strategy for effectively collecting ad-related network
traffic and subsequently extracting ad contents. We then integrate
dedicated approaches into the framework to identify devious ad
contents. We have applied MadDroid to 40,000 Android apps and
found that roughly 6% of apps deliver devious ad contents, e.g., dis-
tributing malicious apps that cannot be downloaded via traditional
app markets. Experiment results indicate that devious ad contents
are prevalent, suggesting that our community should invest more
effort into the detection and mitigation of devious ads towards
building a trustworthy mobile advertising ecosystem.

1 INTRODUCTION
Two-thirds of the world’s population is now connected via mobile
devices [37], and the share of smartphones among such devices has
rapidly increased in recent years. For example, the official Google
Play market for Android currently hosts over 3 million apps [14].
Moreover, most apps on markets are free. There is also a trend
showing that more and more paid apps have been released as free
ones by their developers [71], suggesting that the business model in
free apps offers potentially more attractive revenue. In most cases,
while users do not pay to install and run the apps, developers can
still monetize through displaying advertisements (or ad in short) on
app User Interfaces (UI). It is estimated that the size of the global
mobile ad market would reach 215 billion US dollars by 2021, which
will represent 72% of the total digital budgets [29].

Unfortunately, the mobile ad business model has been abused
by malicious individuals to make undue benefits. For example, un-
scrupulous app developers are attempting to cheat both advertisers
and users with fake or unintentional ad clicks so as to earn prof-
its [19, 22, 31, 49]. As revealed by a recent report, mobile advertisers
have approximately lost 1.3 billion US dollars due to ad fraud in 2015
alone [32], making research on malicious mobile advertisement a
critical endeavor for sanitizing app markets.

Fortunately, the research community becomes increasingly inter-
ested in this area with a variety of research directions targeting the
ecosystem ofmobile ads. For example, researchers have investigated
topics such as automated detection of ad networks [15, 42, 44, 51],

security and privacy analysis of ad libraries [24, 35, 59], and the
detection of mobile ad frauds [19, 22, 31, 49]. Nevertheless, these
studies have so far targeted mobile ad issues from the perspectives
of either app developers or ad networks. The latter plays the role of
trusted intermediary platforms for connecting mobile advertisers
to app developers by providing toolkits (e.g., ad SDKs) to be embed-
ded in apps. The perspective of mobile advertisers themselves, who
provide ad contents and pay ad networks, has been rarely studied.

Despite being a key component in the mobile ad business model,
mobile ad content has been overlooked by the research community.
Yet, ad content poses a number of threats. On one hand, ad content
downloaded at runtime from trusted ad networks could serve as
a channel for attackers to distribute undesirable contents or even
malware. For example, even Google Play apps have been reported
to display porn ads [2, 3]. Recent reports also suggested that some
ad contents actually come with the CoinMiner malicious script
which uses the device’s physical resources in the background to
mine digital currency [4]. On the other hand, besides the ad content
itself, some unwanted payload may be triggered when the user
interacts with the ad content. For instance, the ad clicking event
could redirect the current execution page to a malicious website.
Overall, we refer to such ad contents as devious, since they are
deceitful for all parties (i.e., for app users, for app developers, and
potentially for ad networks when they are unaware of this bad
behavior of mobile advertisers).

To the best of our knowledge, there lacks an in-depth study on
both ad loading contents and ad clicking contents. The closest stud-
ies including Chen et al. [16] and Shao et al. [62] only examine ad
clicking contents, and thus have several limitations (detailed in the
evaluation section) and overlook numerous ad clicking contents. In
this paper, we fill this gap by performing a comprehensive study of
mobile ad contents, aiming to understand the state of practice in
devious ad contents and devise practical techniques for preventing
their spread in the mobile ecosystem. To this end, we first present
a systematic approach to categorizing devious mobile ad contents
based on a thorough investigation of ad-related policies and re-
ports (Section 3). Then we design and implement MadDroid, a
prototype framework for automated detection of devious mobile ad
contents (Section 4). MadDroid leverages a dedicated automated
app testing approach to explore ad views in an app, based on a so-
phisticated ad-first strategy (Section 4.1). While exploring mobile
ads, MadDroid records any network traffic and collects contents ex-
changed between mobile ad networks, advertisers and user devices.
By hooking the HTTP-related APIs in the Android framework,
MadDroid manages to precisely locate ad traffic from all recorded
traffic. (Section 4.2). Finally, we implement in MadDroid a number
of specialized approaches (Section 4.3) to detect specific types of
devious ad contents using techniques such as deep learning, optical
character recognition (OCR), etc.

To summarize, we make the following main contributions:

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’20, April. 20–24, 2020, Taipei Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• A novel ad traffic identification approach. We present
a HTTP hooking approach (by hooking the HTTP-related
APIs) to iteratively build a mapping between ad libraries
and ad hosts. This mapping enables our approach to pre-
cisely pick out ad traffic from general network traffic. The
detailed experiment results suggest that, our approach out-
performs state-of-the-art ad traffic identification methods
significantly, i.e., we have identified three times of the ad
hosts and increased the collection of ad contents by 126%.

• Acomprehensive detection framework.WeproposeMad-
Droid, a framework to detect devious mobile ad contents. To
the best of our knowledge, this is the first attempt in the
literature to detect five groups of devious mobile ad contents.

• A large-scale study in the wild.We conduct a large-scale
empirical evaluation on the usefulness and effectiveness of
MadDroid. By applying MadDroid to 40,000 apps, we find
roughly 6% of apps (2,322) that deliver devious ad contents.
We will release MadDroid, along with all the experiment re-
sults to the research community, to further boost the research
on this direction.

2 BACKGROUND AND TERMINOLOGY

Home Page

Ad View

Landing
Page

App
Installation

Page

Ad Network

(1) Ad loading
request/response

(2) Ad clicking
request/response Content Server

Google
Play

Figure 1: The general working process of mobile ads.

In order to clarify themeaning of specific terms used in this paper,
and to help readers get an overall understanding of how mobile ads
work, we briefly describe the workflow of mobile ad delivery on
users’ device interfaces. Fig. 1 illustrates the overall workflow. For
simplicity, we will refer to any graphical user interface where an
ad can be displayed as a Home Page. When such a page appears
on the foreground of a device’s screen (e.g., after a menu item is
selected), an ad-related HTTP request is sent in an attempt to fetch
ad content from an Ad Network. In the mobile ecosystem, the Ad
Network plays the role of a trusted intermediary platform that
connects advertisers to app developers by providing ad libraries
(e.g., Google’s AdMob) to be embedded in app code for fetching
and displaying ads at runtime. In response to the ad-related HTTP
request, the Ad Network may serve for example an image that will
be used on the Home Page to update an ad view.

Once the ad view is displayed on the Home Page, users can click
it to observe its content. Normally, when the ad is clicked, it will
again trigger another ad-related HTTP request that attempts to
fetch additional ad contents from a Content Server, which may be
hosted by advertisers or other third-parties. There are three types
of ad contents that Content Servers recurrently push to users:

(1) A redirection link that switches the current Home Page to a
so-called Landing Page for displaying the ad information,

such as an online shopping page where the user can purchase
the items that were usually advertised on the Home Page.

(2) A deep-link that switches the current Home Page to Google
Play for helping users install advertised apps.

(3) Automatic download of a file. Typically, this is an APK file.
When the APK downloading is completed, the current Home
Page is switched to an App Installation Page, where users
can decide whether to install the downloaded app.

As shown in Fig. 1, there are two types of ad-related HTTP
requests: one as Ad loading request and the other as Ad clicking
request. Unfortunately, the ad content served in response to both
requests may be comprised of devious artifacts that may threaten
the security and privacy of app users.

3 MOTIVATION AND CATEGORIZATION
We first describe a real-world example of devious ad contents that
we have encountered on a popular racing game app. We then create
a categorization of devious mobile ad contents based on a thorough
investigation of ad-related policies and reports, which will drive the
implementation of techniques for identifying devious ad contents.

3.1 Motivating Example
While manipulating the free racing game app Speed Racing Ulti-
mate1, it is not uncommon to see ads appearing on the foreground.
Fig. 2 provides the screenshot of an example ad view observed by
one of the authors while playing the game. At the top right corner,
there is a cross symbol (×), which conventionally suggests that the
ad view can be closed by clicking at this location. Once clicked,
however, a redirection is triggered and the current home page is
replaced by a landing page where ad content is displayed. At first,
one may suspect that the user failed to properly click on the correct
location, instead clicked on the actual ad, justifying the behavior.
Nevertheless, after several failed attempts, the user concludes that
the “close” functionality is not supported, or at least not working
as expected, via the cross symbol. Further manual investigations
into the ad later revealed that the (×) symbol is actually embedded
in the image. This demonstrates a deceitful behavior as the purpose
of the cross symbol was never to close the ad but to trick users into
clicking on the ad. Such devious ads are increasingly frequent in
practice, however, studies about them are scarce in the literature.

Figure 2: An example of click-deceptive Image.

3.2 Categorization of Devious Ad Contents
The consequence of the redirection triggered by the devious ad
content example presented above was a simple annoyance for users.
1com.minicliphr.speedracingultimatefree [5]

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps WWW ’20, April. 20–24, 2020, Taipei

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

However, we can imagine scenarios where such a redirection lands
on malicious payload being performed. Thus, motivated by such
possibilities, we decided to conduct a systematic study of the current
devious mobile ad contents. To categorize such contents, we first
investigate the undesirable mobile ad contents from: (1) the policies
related to mobile ad contents of popular app markets [6, 33, 53, 54,
70?], (2) media reports in news outlets [2–4, 25, 38, 40, 69], and
(3) some real-world apps that host devious ad contents. Based on
our empirical investigation, we summarize the observed devious
ad contents into five (5) groups enumerated in Fig. 3.

Devious Ad
Content

Ad Loading
Content

Ad Clicking
Content

Click-deceptive Image

Censored Image

Malicious Script

Malicious Redirection Link

Malicious App

Figure 3: The five categorized groups of devious ad contents.

Note that three groups, namely Click-deceptive Image, Censored
Image, and Malicious Script, are related to ad content obtained fol-
lowing the Ad Loading request, while the remaining two, namely
Malicious Redirection Link and Malicious App are related to ad con-
tents obtained after an Ad Clicking request.

We then describe each group in detail.
(1) Click-deceptive Image: As shown in Section 3.1, devious

ad networks (or advertisers) may provide, as ad content, a click-
deceptive image, where a “cross” symbol (×, or similar images) is
directly embedded in the ad image aiming at tricking users into
clicking on it to close the ad view. Normally, the “close” button of
an ad is displayed as a separate image: on one hand, this allows ad
networks (or app developers) to set events (such as click to close)
that are independent from events associated to the ad image (such
as click to follow a link); on the other hand, setting a separate image
offers the opportunity to display the “close” button after a delay of
several seconds, giving enough time for users to notice the ad.

(2) Censored Image: Censored Image refers to such ad images
that fall under censorshipwith respect to state legislation or themar-
ket policy. In this work, we enumerate the cases of Gambling, Vio-
lence,Medical, and Pornographic images, which might be prohibited.
Google itself explicitly warns developers that gambling advertising
should abide by local gambling laws and industry standards [6].
Similarly, Google also disallows the presentation of violent ads as
they are not appropriate for children, while some medical-related
contents cannot be advertised at all [33]. Adult ads also need to com-
ply with certain policies: for example, it is not allowed to distribute
ad contents that may be interpreted as promoting a sexual act in
exchange for compensation in many countries. Besides Google Play,
many third-party app markets [53, 54, 70] do not allow advertising
of Gambling and Pornographic contents.

(3) Malicious Script:Mobile ads, which are usually displayed
via the WebView widget in Android, can legitimately run code to
interact with the host app. For example, a code fragment can be

included to remove the ad after the close button is clicked. Unfor-
tunately, devious ad networks may inject malicious scripts in the
ad. For example, the 360 Fenghuo Lab, has reported that some ad
networks distribute devious ad contents through which they mine
bitcoins on users’ devices, without their knowledge [4].

(4)MaliciousRedirectionLink: Somemobile ads, after clicked,
may jump to landing pages where malicious contents are presented
to the users. When such redirected content is clicked, the security
and privacy of the user may be in jeopardy.

(5) Malicious App: This group refers to such mobile ads that,
when clicked, may download malicious Android apps into the user
device. In this scenario, devious ad contents appear as an attractive
means to distribute malware on user devices.

3.3 Challenges
In this work, we aim at proposing an effective approach to detect
these aforementioned types of devious ad contents from Android
apps. It is nevertheless non-trivial to achieve this automatically.
There are at least three challenges that need to be effectively ad-
dressed. The three challenges are summarized as follows.

• How to automatically trigger and collect ad content?
Mobile ad contents could be collected at the time when the
ad is fully loaded or consumed, which requires not only trig-
gering the appearance of mobile ads but also clicking the pre-
sented ads. Unfortunately, mobile ads could be delivered in
different sizes (e.g. Banners, Interstitials, Full Screens), differ-
ent carrier widgets (e.g. WebView, ImageView, ViewFlipper),
different numbers and places (one or multiple, within the
same UI state or different states), sophisticated approaches
hence are needed to effectively traverse ads in apps while
ensuring good coverage.

• How to efficiently pick out ad traffic from general net-
work traffic? Mobile ad contents can be extracted from the
network traffic, specifically the ad-related traffic (or ad traffic
in short). However, when collecting ad traffic at app running
time, general network traffic (e.g., download a file) would be
also collected, i.e., non-ad traffic and ad traffic are inevitably
mixed. Hence, there is a need to design effective approaches
to separate ad traffic from the general ones.

• How toprecisely differentiate devious ad contents from
normal ad contents?With a systematic approach, we have
identified and categorized five groups of devious mobile ad
contents, which respectively need specialized techniques
to characterize. Considering that new groups of devious
ad contents can be added in the future, the detection ap-
proach should not only be inclusive (e.g., cover all the devi-
ous groups), but also extensible (e.g., can be easily extended
to cover new devious groups).

4 APPROACH
Fig. 4 depicts the essential modules of the workflow in our pro-
posed MadDroid framework. Towards detecting devious ad con-
tents which are delivered to an input Android app, we propose
an architecture with three modules that respectively address the
aforementioned three challenges:

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’20, April. 20–24, 2020, Taipei Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

TCM
Network Traffic Collection

CEM
Ad Content Extraction

DDM
Ad Deviousness Detection

Android
APK

Detection
Result

Figure 4: Overview of theMadDroid framework.

• TCM: a network Traffic Collection Module, which focuses
on traffic generated as part of the ad loading or interaction
phases. This module requires careful design as it requires
dynamic execution which, in order to be effective, must be
focused on covering mainly ad-involved UIs.

• CEM: an ad Content Extraction Module, which carefully
learns to identify, among exchanged traffic, which ones are
about loading content that must be extracted. This extraction
further explores contents that are delivered after an ad view
is clicked.

• DDM: an ad Deviousness Detection Module, which finally
analyzes the extracted ad contents to identify devious ones.
Given the diversity of devious ad contents, this module im-
plements specialized detection schemes with adapted tech-
niques ranging from character recognition to deep learning.

This modularized architecture enables flexibility for extension
and maintenance. Given that the categorization presented in this
paper is based on the currently known devious ad contents, when
other devious ad contents and distributions scenarios are uncov-
ered, each module can be appropriately extended to take them into
account. In the remainder of the section, we describe in detail our
approach for implementing each module.

4.1 Network Traffic Collection
The TCM module implements the first step in the MadDroid frame-
work. Its objective is to harvest all the network traffic that is in-
volved in operations for delivering ads on a given app. This traffic
carries not only data from exchanges between ad networks and
the home page view (i.e., when the app is being loaded), but also
data from exchanges between the home page and the advertiser’s
content server (i.e., when the user interacts with the ad). Thus,
given an Android apk file, TCM must visit all app UI pages where
ads are likely to be loaded, and then explore an interaction with
such ads to collect data in the reached landing page.

For scalability reasons, TCMmust implement an effective and au-
tomated strategy for covering all ad views in an app. Nevertheless,
although it is labor-intensive and time-consuming to implement
the exploration manually, it is also non-trivial to achieve automa-
tion via traditional automated app testing. Indeed, state-of-the-art
approaches in Android, such as MonkeyRunner [26], generate ran-
dom test cases that are not ad-specific: the majority of dynamic
execution scenarios will then be wasted for exploring irrelevant UI
states. As empirically demonstrated by Suman Nath [58] on a set
of ad-supported apps, over 90% of the automatically explored UI
states are not ad-involved pages.

To overcome the efficiency challenge in rapidly and quasi-exclusively
focusing on relevant UI states, we propose to tune the exploration

strategy by generating ad-intensive test cases, i.e., by favoring ad
views. We refer to it as an ad-first exploration strategy. We build
on the finding of a recent study [58] that most ads are displayed in
the main UI page and on the exit UI page. Our ad-first exploration
strategy thus attempts to prioritize the views of these pages, and
further rely on a breadth-first search algorithm where the views in
a page are reordered, i.e., ad views are prioritized.

2.android.widget.FrameLayout

4.android.widget.RelativeLayout

5.android.widget.LinearLayout

6.android.widget.ImageView

View Tree

0.android.widget.FrameLayout

10:android.widget.RelativeLayout

12:android.widget.Button11:android.widget.ImageView

{"temp_id":11,
"parent": 10,
"class:android.widget.ImageView,
"bounds": [[108, 456], [972, 1320]],
"children": [],

"size": "864*864"},

state_2018-08-19_184405

1.android.widget.LinearLayout

9.android.widget.ViewFlipper

7.android.widget.ImageView

8.android.widget.ImageView

Ad Features:Type

Ad Features:Placement

3.android.widget.LinearLayout

Figure 5: An example of a view tree.

Views are identified by traversing the nodes in a view tree that
can be obtained from a given UI state (i.e., a GUI page at a given
time in app execution). Figure 5 shows an example of a view tree.
The root node represents the base layout view on top of which upper
views are placed. Parent nodes are containers to child nodes that
are subject to users’ manipulations. Each node is tagged with basic
view information such as position, size, class name, etc. Inspired
by a most recent work [31], we use such attributes to identify
which nodes among the leaf nodes are likely to be ad view nodes.
Specifically, during our exploration, to ensure good coverage, we
prioritize and click on each view that falls in the class of WebView,
ImageView or ViewFlipper.

Based on the results of the ad-first exploration, dynamic execu-
tion of ad-related UI states will lead to a large collection of network
traffic. Unfortunately, at this stage, the collected traffic contains
not only ad-related traffic but also non-ad related ones (such as
data exchanged for app analytics). There is hence a strong need
to precisely distinguish between ad and non-ad traffic, in order to
correctly extract ad content. To this end, we propose a framework
runtime hooking approach to achieve this purpose. Details will be
given in the next subsection.

4.2 Ad Content Extraction
The CEM module analyzes the traffic collected through TCM in
order to extract relevant content for further assessment. Indeed,
by default, TCM collects any traffic that occurs while the ad is
being loaded or after it is clicked. Since we are interested in traffic

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps WWW ’20, April. 20–24, 2020, Taipei

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

carrying ad contents, CEMmust dismiss all traffic that is not related
to advertisements (e.g., parallel traffic from core app functionality).
To this end, the first step taken in CEM is to identify ad-related
HTTP requests/responses, considering those that are done as part
of exchanges with ad networks. Take Table 1 as an example, a
simplified list of HTTP requests harvested from the execution of
app com.bbsoft.InternetPolyglot is illustrated and startappservice.com
is known as an ad-domain. The first step is hence to highlight such
ad-domain related HTTP requests (cf. lines 1, 3 and 4).

Table 1: Simplified list of harvested HTTP requests (domain
+ path)

1 AD-DOMAIN info.static.startappservice.com
/1.4/getadsmetadata

2 NON-AD data.flurry.com /aap.do
//ad-load

3 AD-DOMAIN req.startappservice.com /1.4/gethtmlad
4 AD-DOMAIN imp.startappservice.com

/tracking/adImpression
//ad-click

5 NON-AD cl.untildogtop.com /t/clk
6 NON-AD my1trk.com /redirect/action

/1InYjNywuJnNnYTwiKHNmf3BlZ2E_eQ_Pyi
7 NON-AD www.spyoff.com /geo

As shown in Fig. 6, given an ad-domain whitelist, it would be
straightforward to pick out ad-load traffic from a collection of
network traffic. Unfortunately, it is not easy to manually build
such a whitelist of ad domains, mainly due to two reasons. On one
hand, there are a plethora of ad libraries and new ad networks
might continuously join the ecosystem. On the other hand, we
empirically found that, for a given ad library, the domain names of
ad networks may change, and even one ad library may correspond
with a number of domain names, making it hard to label a complete
and accurate list of ad-domain names. For example, we found that
the ad network “daoyoudao” [23] has dozens of ad-domain names,
including “daoudao.com”, “guiji.com”, “133155.com”, “161161.com”
and “150155.com”, etc.

Therefore, we propose to develop in CEM a runtime HTTP hook-
ing approach (as shown in Fig. 6) for iteratively identifying ad
relevant domain names, so as to locate ad-relevant traffic. Our ap-
proach dynamically hooks all the HTTP-related methods at the
framework level. Following the same ad-first exploration approach
detailed in the previous section, when a HTTP-related method is
reached, the hookingmodule will record the current execution stack
trace and the URL associated with the HTTP method. Following
the dumped stack trace, our approach can automatically locate the
package that initiates the HTTP connection and build a mapping
(hereinafter referred to as pkg-domain mapping) from packages to
URL domains. If the package belongs to a known ad library, all the
domains triggered by this package will be regarded as ad-domains
and recorded into the mapping. Similarly, if the domain matches
one of the ad-domains recorded in the mapping, the corresponding
package will be flagged as an ad library and hence recorded into
the mapping. By doing so, the runtime hooking approach enables
our approach to iteratively grow the whitelist of ad-domains.

Once ad traffic is located from the network traffic collected by
TCM, it can unfold the next step of extracting ad contents from all

Android
APK

Ad-domain
Whitelist Match

Runtime
Http Hooking

Pkg-domain
Mapping

Network
Traffic

Ad
TrafficIterative Ad-domain Discovery

Figure 6: Runtime hooking approach for locating ad traffic.

relevant ad-response messages (i.e., those sharing the same session
id as the identified ad request messages). Ad contents that are
extracted include images and executable scripts. Such ad traffic
that is only relevant to simple message exchange (e.g., sending a
message to confirm an ad impression) without carrying actual ad
content will be ignored (e.g., lines 1 and 4 in Table 1 will be ignored).

With regards to ad click, the response message of an ad-loading
request generally includes a URL indicating the target address when
the ad is clicked. Indeed, ad clicking requests are supposed to be
redirected to the appropriate content server whose domain address
is stored in the ad content. More specifically, the domain address
is bound to ads’ click events. Let us take Listing 1 again as an
example, after the ad is clicked (line 5), an ad clicking request
will be sent to a content server, which returns a redirection link
(line 6) that eventually leads to the ad landing page (line 7), which
is a VPN app website. By analyzing the binding information, we
can retrieve this address and subsequently identify ad clicking-
related traffic. By dynamically exploring the ad clicking events on
installed apps, we can further collect three types of ad contents:
(1) redirection links: the URL bound to the ad click event might
not be the final destination: i.e., the landing page may be reached
after several redirections. (2) downloaded APKs: the ad clicking
request will trigger a downloading process of non-requested apps.
(3) Google Play pages: the ad click will be directed to Google Play
to promote the advertised app.

There are at least two means to explore the ad clicking events: (1)
by simulating the clicking request (e.g., record the request URLs and
then send requests using a browser later) or (2) by actually clicking
the ad. The latter approach is adopted in this work as we have
experimentally found that the former approach is likely leading to
failures of requests. For example, we have empirically observed that
some redirection links are time-sensitive. The emulated request
after a certain time period will simply result in an invalid request.

4.3 Ad Deviousness Detection
The DDM module in MadDroid is the core component in charge
of implementing analysis procedures for assessing the variety of
artifacts collected by CEM in order to check against the presence
of any devious ad content. Given that each group of devious ad
content presents specific characteristics and detection challenges
that require specific detection schemes, we design DDM with a
plugin-based system architecture. This offers the flexibility to ad-
dress newly appearing groups of ad contents by integrating an
independent plugin implementing the required analysis of ad con-
tents using specialized state-of-the-art techniques.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’20, April. 20–24, 2020, Taipei Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

In the current version of theMadDroid, we have already proposed
prototype plugins that cover the devious ad content groups. We
now detail, for each plugin, the detection strategy that was applied
as well as some implementation details.

4.3.1 Click-deceptive Image. Themain idea is to checkwhether
the image actually embeds a “cross” symbol. This refers to the
problem of recognizing objects in images. Traditional object de-
tection algorithms have shown to be effective for object recogni-
tion [10, 12, 61]. In this work, we adopt the YOLO (You Only Look
Once) approach, which is proven to have achieved higher efficiency
and accuracy than other approaches [12, 61]. The work-process is
illustrated in Fig. 7. First, the algorithm splits the image into a S ∗ S
grid, where each cell is called a bounding box. Then, it predicts the
probability and confidence of each box to be the object that should
be recognized. The output of this step is a tensor of S×S×(B×5+C)
dimension, where B is the number of bounding boxes capable of
marking the object: we set B = 1 in our work as we assume that a
single bounding box is enough to fully contain the “cross” symbol.
C is the number of objects to be recognized: C = 1 in this work
as we aim to recognize only a single object. Finally, YOLO uses a
non-maximal suppression approach to choose the box that yields
the best prediction score. For more details on the inner-working of
the algorithm, we refer the reader to the description in [12, 61].

Input Picture: divided into 7×7 grids

Bounding boxes

confidence（x,y,w,h,c）

Class probability map

Final decisions

Convolution layer

448

448

7

7

3 192

112

112
3

3

256

3

3

56

56

7

7
1024 4096

7

7
30

Connected Layer

Output Tensor
S×S×(B×5+C)=7×7×(1×5+1)

B:num of bounding box in each grid
C:num of object class

...

Figure 7: Click-deceiving picture detection based on YOLO.

Although object recognition techniques have been proposed for
decades in various applications, including face detection, the litera-
ture, to the best of our knowledge, does not report any work related
to the case of “cross” (×) symbol, a simple but pervasive object. As
a result, there is no public dataset that we can leverage to train our
model for the detection of ad click-deceptive Images. As part of the
MadDroid effort, we propose to construct such a training set from
scratch. Although we had already harvested some sample images
during our manual investigations for the purpose of characterizing
devious ad contents, the obtained set is not representative. Since
normal ads also contain “cross” symbol and it is difficult for users to
distinguish if the “cross” symbol is displayed from an independent
image, we collect images from found ads and artificially embed
“cross” symbols into them. Note that we have collected more than
100 different kinds of “cross” symbol images from normal ads, and

we artificially embedded them into images with random positions
and random size (within a normal size range). Eventually, we obtain
a set of 2,375 pictures and record the ground truth (i.e., the actual
position of the “cross” symbol) via a common object recognition
format PASCAL Visual Object Classes [9].

4.3.2 Censored Image. We treat separately the cases of gam-
bling and pornographic/violence/medical devious ad content which
are all considered as censored images.

Pornographic/Violence/Medical Ad Picture. Image detection
has been a hot topic in the research community for decades. With
the recent advances in CV and deep learning, the research line has
matured, and many highly effective approaches [7, 47, 52, 67] are
available. Given as an input an ad image, Google Vision API [34]
will output a range from 1 to 5 (i.e., from very unlikely to likely and
very likely) indicating the likelihood of being the image targeted by
the analysis (e.g., pornographic, violence, or medical). In this work,
we consider that a given image is a censored one as long as the
prediction result is equal or higher than 4, indicating the image is
likely or very likely to be a pornographic/violence/medical image.

Gambling Ad Picture. Because of the heterogeneity in gam-
bling (e.g., blackjack, poker, etc.), it is hard to build a graphical
model that captures the “gambling” instances accurately. Thus, in-
stead of detecting gambling images graphically, we adopt a simple
approach that focuses on the text embedded in the ad images. To
that end, we rely on Optical Character Recognition (OCR) [8] tech-
niques to extract any text from a given ad image and match them
against a predefined set of gambling keywords. We consider that an
ad is about delivering gambling contents if any of its embedded text
tokens match any of the keywords enumerated currently in the pro-
totype plugin implementation. The gambling-related keywords are
collected from various sources, including the top searched Casino
keywords in Google [57], and the frequently presented words on
several online gambling websites (in both English and Chinese).
Since similar ad contents displayed on online gambling websites
might be also used in mobile apps, when counting the recurrently
presented words, we also take into account the words presented in
pictures of those websites. Eventually, our gambling-related key-
word set contains 100 words in Chinese and English2.

4.3.3 Other Devious Ad Content Groups. Devious ad content
for other groups, namely Malicious Script, Malicious Redirection
Link and Malicious App, which, contrary to images, have been well
investigated in the security community. Hence, given that we build
a framework, for our plugin prototypes, instead of reinventing the
wheels, we leverage state-of-the-art techniques to detect issues
with such artifacts. Specifically, we rely on anti-virus scanners to
flag malicious artifact. Concretely, DDM sends these non-image
artifacts to VirusTotal [11], a free online service that integrates
over 60 anti-virus engines, has been widely adopted by the research
community [17, 48, 65]. Our prototype plugins implement detection
schemes where, for each artifact that is sent to VirusTotal will be
considered as ad devious content whenever at least three (3) anti-
virus scanners flag it as suspicious.

2Example keywords include gambling, casino, Macau dealer, beauty Croupier, lottery,
GoldenFlower (ZHAJINHUA in Chinese), etc.

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps WWW ’20, April. 20–24, 2020, Taipei

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

4.4 Implementation
The core of the MadDroid framework is implemented in Python.
It includes the architectural foundation for gluing the input and
output formats of the different modules, as well as for reporting
decisions. We have implemented a lightweight UI-guided test in-
put generator to dynamically explore Android apps, with a special
focus on ad views during exploration and enforced the ad-first
exploration strategy. The network traffic is harvested through Fid-
dler [66], which logs all HTTP(S) traffic and supports customized
Fiddlerscripts [41] to extract specific contents from the traffic. The
runtime hooking is based on the Xposed framework [1], which can
collect the runtime information of tested Android apps.

5 EVALUATION
Since MadDroid aims at automatically harvesting mobile ad con-
tents and detecting devious ad contents, we evaluate it by answering
the following research questions.
RQ1: Can MadDroid detect devious mobile ad contents?
RQ2: How effective is the HTTP hooking approach (in the CEM
module) in locating ad traffic from general network traffic?
RQ3: How accurate is MadDroid in detecting devious mobile ad
contents?

Our experimental setup includes the construction of a large set
of ad-supported apps from markets, the execution of these apps on
a physical device, and the collection of network traffic.

5.1 Dataset Construction
To prepare the dataset for evaluating MadDroid, we resort to the
well-known AndroZoo dataset [43] to crawl Android apps. Since we
are only interested in apps displaying advertisements, we further
leverage VirusTotal to collect ad involved apps, i.e., adware. In this
work, we consider a given Android app is adware as long as one
anti-virus engine flags it as such. To this end, we randomly collected
40,000 adware from AndroZoo, including 20,000 Google Play and
20,000 third-party apps, to support our experiment.

Among the randomly selected 40,000 apps, we run each app on
a Nexus 5 smartphone, and we use six smartphones in parallel.
Considering that loading an ad from a remote server may take time,
we set the transition time in app automation to 5 seconds. Overall,
automated exploration for each app takes on average 2 minutes. It
takes roughly ten days to run all the apps automatically. Contrary to
prior related work [16, 60], we do not rely on emulators given that
ad libraries may implement verification steps to avoid ad networks
from serving ads when the app is being experimented on emulated
environments [68] (the objective being to prevent fake impressions
of ads [22], i.e., unjustified profit for app developers).

5.2 Harvested Ad Content
Ad-related Traffic:Out of the 40,000 apps, wewere able to success-
fully run 38,553 (i.e., 96.38%) on the Nexus 5 smartphones. During
the execution of these apps, the TCM module has collected in total
2,488,897 HTTP and HTTPS messages, from which our CEM mod-
ule flags 541,129 messages related to ad-load (21.7%) and 692,122
messages related to ad-click (27.8%).
Ad Content: The CEM module then extracts ad contents from the
collected traffic: we retrieved 83,347 ad images, 52,592 executable

scripts, 49,392 redirection URLs, and 2,545 apps directly downloaded
and 2,081 apps promoted via Google Play by clicking the ad views.

5.3 RQ1: Overall Results
Devious Content Detection: As detailed in Table 2, the DDM
module flags 279 ad images (specifically, 172 adult, 61 medical, 37
gambling, and 9 violence ad images), 112 executable scripts, 1,822
redirection URLs and 1,457 downloaded apps as devious ad contents.
These statistics show that ad clicking contents (i.e., obtained by
clicking on displayed ads) are more likely to be devious than ad
loading contents (i.e., obtained when loading a page with ad view).
This is reasonable since dynamic analysis can reveal deviousness if
the content is available automatically on the host app (as what ad
loading request does) and subsequently may prevent their accep-
tance on markets. Instead, leaving their loading, at runtime, from
third-party servers is a more effective distribution model.

Nevertheless, although devious ad loading contents are more
scarce, they may have a higher impact on the security and privacy
of end users. Indeed, unlike ad clicking contents, which may not be
triggered (e.g., the ad is not clicked), ad loading contents will, in
any case, be delivered to users when the app is launched.

Table 2: Statistics on harvested ad contents.

Ad Content Total Devious Type
Ad Images 83,347 279 (0.33%) Ad Loading
Executable Scripts 52,592 112 (0.21%) Ad Loading
Ad Redirection URLs 49,392 1,822 (3.69%) Ad Clicking
Downloaded Apps 2,545 1,457 (57.25%) Ad Clicking

Malware Distributed by Ad Content: It is noteworthy that more
than 57% of the downloaded apps are alerted as suspicious by an-
tivirus engines (hence are categorized as devious content in Ta-
ble 2). More than 30% of these devious contents are even flagged
by over 10 anti-virus engines, indicating a consensus on their ma-
liciousness. Table 3 lists the top 5 identified malware ranked by
the number of VirusTotal anti-virus engines that agree on them
being malicious. We further resort to Google Play and an ASO
website (www.chandashi.com) that contains apps in more than 10
third-party markets to search for these apps (based on their unique
identifiers). Expectedly, 21% of them (311/1457) are not hosted on
any markets (both official and alternative markets), and over 91%
(1332/1457) of them are not listed on Google Play. This result sug-
gests that attackers are leveraging ad contents as a new channel
to distribute malicious apps, especially considering that more and
more app markets are enforcing strict security checks.
Host Apps of Devious Content: We further look into the host
apps of these devious content to investigate the spread of devious
ad contents. Results are summarized in Table 4. Roughly 6.02% of
apps (2,322 out of 38,553) in our dataset are identified as deliver-
ing devious ad contents. The fact that more devious contents are
collected than the number of host apps suggests that one app may
repeatedly present devious ad contents. Sometimes the same app
may present a diversity of devious ad contents. Moreover, even
popular apps on the official Google Play market (e.g., the popular
“Magic Candy” game app3) are involved in providing devious ad

3By the time of this study, this app is still available on the Google Play market [13]
and has received more than 10 million installs.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’20, April. 20–24, 2020, Taipei Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 3: Top 5 downloaded malicious apps ranked by the
number of flagged VT engines.

Package Name MD5 Source App # Engines
com.zhulai.jingjimoren d3a6fa8359ad1b139004e617ce3baab8 com.ziipin.softkeyboard.kazakh 44

girl.game.weaimeng 21846ecdfe3ae93391372bdd1cd43032 air.com.aoaogame.game34 37
afltr.austscf798.zhnf760 e260fd6f711aea632bb4aae2776a1cef com.easaa.c000000021 31

com.zhulai.xingqiudazhan ecf78456db04bce595f798c20fb0bf9f com.ziipin.softkeyboard.kazakh 31
com.dfg57.g8t5g 020a0520df8f5562cd8c2c14ae3ef6ea com.droidlink.bmw.lock 30

contents (distributing click deceptive images). This is evidence that
the identification and blocking of devious ad content remains an
unresolved issue in the industry. The research community thus
needs to put more effort into approaches and tools for addressing
unethical behavior in mobile ads so as to provide a clean and safe
environment for displaying mobile ads.

Table 4: Host apps of devious content.

Type # Devious Contents # Host Apps
Click-deceptive Image 525 40

Censored Image 279 240
Malicious Script 112 46

Malicious Redirection Link 1,822 838
Malicious App 1,457 1,267

Total - 2,322

TheRole of AdNetworks:We further investigate the distribution
of ad networks in terms of the number of devious ad contents that
they push to app users’ devices. In this work, we have identified in
total 3,518 ad host names (or networks in simplicity). Due to space
limitation, we only listed the top 3 ad networks that distribute devi-
ous ad content for each group, as shown in Table 5. It is interesting
to observe that, for censored images, malicious scripts and mali-
cious links, most of them are distributed by popular ad networks.
For example, over 46% of malicious links were distributed by star-
tapp and the google ad network. Considering that these popular ad
networks are widely adopted, many users may have already been
affected by the presence of devious ad contents on their devices.
For deceptive images and malicious apps, most of them were found
in less-popular ad networks. We argue that the ad networks need
to be responsible for such threats by implementing adequate means
to keep devious ad contents from being pushed to end users.
The Origin of Devious Contents:We further seek to investigate
the advertisers that distribute the devious contents by analyzing the
landing page of malicious redirection links and the downloading
address of malicious apps. Table 6 lists the top 5 for each of them.
We observe that most of the malicious links and malware were
originated from several specific domains. Top 5 domains occupied
over 23% of malicious links, and over 56% of malware downloading
URLs. This result suggested that some advertisers have the tendency
to release malicious contents. Therefore, it is important and urgent
to identify them and remove them from all the ad networks.
Comparisonwith the state-of-the-art:A recent closest study [16]
characterizes the malicious behavior of mobile ad landing pages.
Unfortunately, their tool and dataset are not publicly available.
Thus, we can neither apply their approach to the apps we randomly
selected in this work nor apply MadDroid to their apps. Hence,
we explain why our approach can collect much more ad contents
than theirs according to the design. First, like all the other previous
studies, Chen et al. only focuses on ad clicking contents, letting ad
loading contents untouched. Second, they only take into account

Table 5: Top ad networks that distribute devious ad content.
Top 3 ad networks ranked by the number of distributed click deceptive images
ad network # devious content % devious content
me2s.co 382 72.8%
go2s.co 120 22.9%
droidhen.com 8 1.5%

Top 3 ad networks ranked by the number of distributed censored images
startappexchange.com 146 52.3%
googleads.g.doubleclick.net 34 12.2%
adeco.com 16 5.7%

Top 3 ad networks ranked by the number of distributed malicious scripts
googleads.g.doubleclick.net 74 66.1%
startappexchange.com 18 16.1%
nads.wuaiso.com 3 2.7%

Top 3 ad networks ranked by the number of distributed malicious links
startappexchange.com 496 30.1%
googleads.g.doubleclick.net 267 16.2%
mobincube.com 155 9.4%

Top 3 ad networks ranked by the number of distributed malware
ie2o.com 343 23.5%
gamezi.com 217 14.9%
td68x.com 132 9.2%

Table 6: The Origin of Devious Contents.

Top 5 landing page domains of malicious redirection links
domain # malicious link % malicious link
revcontent.com 145 8.0%
take-your-prize-now1.life 119 6.5%
ds-club.ru 75 4.1%
wolve.pro 42 2.3%
inhabitny.com 39 2.1%

Top 5 downloading domains of malicious apps
domain # malicious apps % malicious apps
ie2o.com 343 23.5%
gamezi.com 217 14.9%
td68x.com 132 9.2%
clouddn.com 78 5.4%
cmbst.cn 54 3.7%

WebView widgets for inferring advertisements. However, we ex-
perimentally find that WebView is only used by roughly half of the
advertisements (51.93%). ImageView and ViewFlipper widgets have
also been frequently leveraged to display ads. Third, they exclude
all apps with multiple WebViews from their dataset. Our experi-
ment reveals that around 30% (2,751/8,604) of the apps are involved
in two or more distinct ad widgets, while 48.8% (1,343/2,715) of
them contains two or more Webviews. Finally, the list of ad hosts
considered by Chen et al. also limits their capability of identify-
ing all advertisements. As shown in the next section, our HTTP
hooking approach can significantly increase the list of ad hosts for
identifying advertisements.

5.4 RQ2: Effectiveness of the HTTP hooking
TheCEM is a keymodulewhere non-ad traffic is filtered out through
a HTTP hooking approach. Given that this step is essential to locate
and extract ad contents, it is important to assess its effectiveness
so as to validate this step in the workflow. Recall that the HTTP
hooking approach takes as input a set of ad libraries and/or ad hosts
and the library-host mapping is built iteratively. We evaluate our
approach through the following three settings.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps WWW ’20, April. 20–24, 2020, Taipei

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Iteration: 0 15

Figure 8: Results of RQ2 in 15 Iterations. Each iteration is
denoted by an edge: vertical edge for expanding ad hosts
(based on the latest ad library list) while horizontal edge for
expanding ad libraries (based on the latest ad host list).

• S1: Ad libraries only. Wwe send only ad libraries (with
the ad host set as empty) to evaluate the effectiveness of
the HTTP hooking approach. Specifically, 52 popular ad
networks, maintained by LibRadar [51], are considered.

• S2: Ad hosts only. Instead of giving ad libraries as input,
we send only ad hosts to run the experiment. Specifically, the
1,315 ad hosts4 leveraged by Chen et al. [16] in their mobile
advertising threats study are considered in this experiment.

• S3: Ad libraries and hosts. Finally, we take into account
both the aforementioned 52 ad libraries and the 1315 ad hosts
as input to conduct the evaluation.

Figure 8 illustrates the experimental results. The x-axis and y-
axis represent respectively the number of ad libraries and ad hosts.
Interestingly, no matter starting from which setting, all the exper-
iments tend to converge to the same result within 15 iterations.
Thanks to the HTTP hooking approach, the number of ad hosts has
almost tripled, resulting in around 3,500 ad hosts, which in turn
immensely increases the collection of ad contents by 126%.

Figure 9 presents the top five involved ad libraries and ad hosts,
w.r.t. the number of hosts triggered by each library and the number
of libraries triggering the same host, respectively. The top-ranked
library, namely com.applovin, is even associated with 357 distinct
ad hosts, while the top-ranked ad host, namely googleads.g.
doubleclick.net, is triggered by 175 ad libraries. It is surprising that
one ad library can trigger multiple distinct ad hosts and one ad
host can be triggered by multiple ad libraries. Our in-depth manual
investigation reveals that those top-ranked libraries have usually
embeddedwithmultiple other ad libraries and the actual ad requests
are triggered by those embedded ones, resulting in hence different
ad hosts mapping to different ad libraries.

Our in-depth analysis further reveals that some libraries pointed
to the same ad hosts are actually the same ones but have been
deeply obfuscated. For example, api.airpush.com is a well-known
ad library. In this experiment, we find various libraries such as
com.avtqk.ubjir220086 and com.filGh.hXwrF124710 that trigger the
same ad host (i.e., api.airpush.com) and these libraries are actually
the obfuscated versions of the original airpush library. This result
suggests that our HTTP hooking approach can be even a promising
approach for identifying obfuscated libraries.
4This list is continuously being updated. At the time of the study presented by Chen
et al. [16], the number is 1,183.

357

121

77

70

56

com.applovin

com.mobimento

cn.domon

com.startapp

com.appsgeyser

(a) Lib.

175

138

90

83

52

googleads.g.doubleclick.net

api.airpush.com

ci.tv.cdstv.cn

vi.pi.vpvtv.cn

ad.leadboltapps.net

(b) Host.

Figure 9: Top five involved ad libraries and ad hosts.

5.5 RQ3: Performance Evaluation
5.5.1 Click-deceptive Image. Given that we have built ourselves
the training dataset for detecting click-deceptive ad images, and
selected a technique that has not been applied in the literature for
such cases, we evaluate the performance of this detection as the
main pain point in the validation of the DDM module. We recall
that we have collected 2,375 click-deceptive images as introduced in
Section 4.3. To evaluate the performance of our plugin for detecting
click-deceptive images, we randomly select 2,175 images to form
a training set for YOLOv2. Then, we put the remaining 200 click-
deceptive images, along with 200 normal ad images (i.e., without
“cross” button embedded) into a testing set and apply the trained
YOLOv2 model to it. Table 7 summarizes the prediction results of
our approach to the detection of click-deceptive images. Among
the 400 images in the testing set, our YOLOv2 model flags 201 and
199 images as click-deceptive and normal, respectively. With 5 false
positive results and 4 false negative results, our approach yields a
precision and recall of 97.51% and 97.99% respectively for predicting
click-deceptive images, demonstrating that our approach is quite
reliable for recognizing the “cross” button embedded in images.

Most of the closing buttons in ad images follows the form of a
cross symbol, but exceptions exist that some of the closing buttons
are demonstrated in text images. To this end, we implement a
keyword match on the result of OCR that includes close, exit, skip
in Chinese and English. Eventually we identify one such case.

5.5.2 Censored Images. Scenarios for detecting Pornographic, Vio-
lence, and Medical images are directly based on the popular Google
Vision API with pre-trained deep learning models. Google Vision
API has been widely used by state-of-the-art approaches and has
been experimentally demonstrated to be effective in flagging porno-
graphic, violence, and medical images [16, 18, 30, 55]. As experi-
mentally demonstrated by Chen et al. [16], Google Vision API can
indeed outperform other image scanning services.

For the gambling image detection, with a set of 100 gambling-
related keywords in both Chinese and English (configurable), Mad-
Droid achieves 100% of accuracy for identifying gambling images,
as all the identified images indeed contain the defined keywords.
Despite that we have formed a relatively large set of gambling-
related keywords, it is still possible that some gambling images
are overlooked, e.g., they do not contain keywords, or our list of
keywords is incomplete. However, these cases are rare in our study.

5.5.3 Malicious Scripts/Links/Malware. Since we are not capable
of manually confirming if a given app, redirection link or script is
malicious, we rely on VirusTotal to flag malicious ones, which is
widely used in our research community.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’20, April. 20–24, 2020, Taipei Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Table 7: Performance of click-deceptive picture recognition.

Click-deceptive
(Predictive)

Non-Click-deceptive
(Predictive)

Click-deceptive (Actual) True Positive (196) False Negative (4)
Non-Click-deceptive (Actual) False Positive (5) True Negative (195)

6 DISCUSSIONS
Implications. Our findings in this paper suggest that ad networks,
even popular ones such as AdMob, are involved in the delivery of
devious ad contents to end users’ devices. The fact that ad networks
are not always delivering legitimate ad contents suggests that the
ad contents (likely provided by Advertisers) might not be properly
checked by ad networks before being pushed to user devices. As
a result, devious Advertisers may exploit the limitations in the
current system to advertise devious contents, leading to a poor
user experience which harms the reputation of both ad networks
and app developers. We argue that ad networks need to introduce
automated tools to regulate the behavior of advertisers. Moreover,
it is hard to know if ad networks are involved in this black market.
They may turn a blind eye on purpose as they have actually hosted
the content servers. We hence appeal to the community for putting
more effort to explore this new research direction.

Limitations.The implementation ofMadDroid, however, carries
several limitations. First, we take advantage of state-of-the-art app
automation technique [45] to explore the app, and use an ad-first
exploration strategy, to achieve a balance between time efficiency
and ad view coverage, which may cause some ad views to be missed
during UI exploration. Nevertheless, our experiments suggest that
we could extract much more ad contents than existing studies.
Second, our categorization of devious content might be incomplete
since it was built based on existing knowledge. Nonetheless, for new
types of devious content, it is quite easy to extend the framework
of MadDroid for further analysis. Third, the ad contents shown
in a given app may vary due to factors such as time, location,
user identifiers, etc. Thus, in our automation testing, some devious
behaviors may not be triggered due to various reasons.

7 RELATEDWORK
Mobile Ad Clicking Content Analysis. Beside the state-of-the-
art work by Chen et al. [16], the closest work related to ours is
proposed by Rastogi et al. [60], who have experimentally explored
the security issues of ad clicking contents, without considering the
ad loading content. More specifically, they develop a systematic
approach to explore the ad contents using a computer vision based
app automation technique in an emulator. Comparing to our ap-
proach, which explores the ad contents using an ad-first exploration
strategy and actually clicking the displayed ads in a smartphone,
their approach is more likely to fail, i.e., fewer contents are har-
vested. Similarly, Son et al. [63] are also interested in the devious
behavior of advertisers. They have discovered that malicious adver-
tisers may push executable scripts to access the external storage of
user’s devices so as to infer sensitive information of users. In this
work, our approach has also taken into account the aforementioned
three groups of devious ad contents, namely malicious redirection
link, malware and malicious script. Moreover, to the best of our
knowledge, it is the first work that considered the click-deceptive
images and censored images during the loading of mobile ads.

Malicious Web Advertising Analysis. Malicious advertise-
ment has been extensively studied in the context of web advertising,
which is so-called web malvertising. This line of studies mainly
falls in the group of drive-by-download attack detection. Cova et
al. [21] and Lu et al. [50] proposed to detect drive-by-download
attack and malicious Javascripts that embedded in the advertising.
s. Stringhini et al. [64] and Mekky et al. [56] used the properties of
HTTP redirections to identify malicious advertisement behaviour.
Li et al. [46] performed a large-scale study through analyzing ad-
related Web traces, and found that malicious advertising infects
both top Web sites and leading ad networks (e.g., DoubleClick).

Mobile Ad Fraud Detection. Various research studies are pro-
posed to investigate the fraudulent behaviors of mobile app devel-
opers, who aim to entice users to click ads [22, 31, 49]. For example,
Crussell et al. [22] present an approach calledMAdFraud attempting
to identify click frauds (fake impressions and clicks). Liu et al. [49],
by statically analyzing the layouts of apps, have investigated static
placement frauds (e.g., too many ads displayed on a single page) on
Windows Phone. Dong et al. [31], have designed and implemented
an approach called FraudDroid to detect fraudulent ads in Android
apps. They have empirically summarized nine types of ad frauds,
including both static placement frauds and dynamic interactive
frauds. Our approach, targeting the devious behavior of advertisers,
can be considered as a supplement of these studies towards building
a trustworthy and clean ecosystem for mobile advertising.

Mobile Ad Library Detection and Analysis. The majority of
research studies targeting the mobile ad ecosystem are actually
focused on ad libraries. One line of work focuses on identifying ad
libraries [42, 44, 51]. The other line of work focuses on the security
and privacy issues of ad libraries [15, 24, 35, 59]. Since ad libraries
are normally provided by ad networks, who play an important role
in distributing devious ad contents, the aforementioned approaches
could be useful for complementing our approach towards better
understanding the business model of devious mobile ad contents.

Automated App Testing. In this work, the ad contents are
harvested based on automated app testing, where an ad-first explo-
ration strategy is adopted to explore app pages with a specific focus
of displayed ads. Automated app testing has been widely adopted
for exploring apps at runtime [20, 39]. Several Android UI explo-
ration frameworks [27, 28, 36] have been developed to facilitate
app testing. In this work, we build on top of DroidBot [45], and
we adopt a sophisticated exploration approach that is originally
proposed by Dong et al. [31] for generating ad-focused test inputs.
Nonetheless, we have a different focus in this work, which is to
harvest ad contents from mobile ad networks and advertisers.

8 CONCLUSION
In this paper, we perform a large-scale exploratory study of mobile
ad contents, which has been overlooked by the research community.
We first create a comprehensive categorization of devious mobile
ad contents, then we build MadDroid, a framework for automated
detection of devious mobile ad contents. By applying MadDroid to
40,000 Android apps, we find that devious ad contents are preva-
lent: 6% of apps in our study are identified as delivering devious
ad contents. To the best of our knowledge, MadDroid is the first
attempt towards mitigating threats from both ad-load and ad-click
introduced by mobile ad contents.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MadDroid: Characterizing and Detecting Devious Ad Contents for Android Apps WWW ’20, April. 20–24, 2020, Taipei

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES
[1] Xposed framework api. https://api.xposed.info/reference/packages.html, 2016.
[2] Google play store malware targets porn ads at millions of kids.

http://www.itpro.co.uk/malware/30294/google-play-store-malware-targets-
porn-ads-at-millions-of-kids, 2017.

[3] Malware displaying porn ads discovered in game apps on google play.
https://research.checkpoint.com/malware-displaying-porn-ads-discovered-in-
game-apps-on-google-play/, 2017.

[4] Ad contents contain malicious coinminer scripts. http://bbs.360.cn/thread-
15338398-1-1.html, 2018.

[5] Detection result. https://www.virustotal.com/#/file/89225036f339ac1011
80699d85eef790e3017f1d0773d6e4a69e680a2bd27060/detection, 2018.

[6] Developer policy center: Monetization and ads.
https://play.google.com/about/monetization-ads/, 2018.

[7] Open nsfw model, 2018.
[8] Optical character recognition - wikipedia.

https://en.wikipedia.org/wiki/Optical_character_recognition, 2018.
[9] The pascal visual object classes homepage. host.robots.ox.ac.uk/pascal/VOC/,

2018.
[10] Speeded up robust features. https://en.wikipedia.org/wiki/Speeded_up

_robust_features, 2018.
[11] Virustotal. https://www.virustotal.com/, 2018.
[12] Yolo: Real-time object detection. https://pjreddie.com/darknet/yolo/, 2018.
[13] Magic candy - google play. https://play.google.com/store/apps/details?id=

com.gamoper.magiccandy.free, 2019.
[14] AppBrain. Current number of android apps on google play.

https://www.appbrain.com/stats, 2018.
[15] Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection

in android and its security applications. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’16, pages 356–367,
2016.

[16] Gong Chen, Wei Meng, and John Copeland. Revisiting mobile advertising threats
with madlife. In The World Wide Web Conference, pages 207–217. ACM, 2019.

[17] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee, XiaoFeng Wang,
Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou. Following devil’s footprints:
Cross-platform analysis of potentially harmful libraries on android and ios. In
Security and Privacy (SP), 2016 IEEE Symposium on, pages 357–376. IEEE, 2016.

[18] Shih-Hsin Chen and Yi-Hui Chen. A content-based image retrieval method based
on the google cloud vision api and wordnet. In Asian conference on intelligent
information and database systems, pages 651–662. Springer, 2017.

[19] Geumhwan Cho, Junsung Cho, Youngbae Song, and Hyoungshick Kim. An
empirical study of click fraud in mobile advertising networks. In Proceedings of
the 10th International Conference on Availability, Reliability and Security (ARES),
pages 382–388, 2015.

[20] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro Orso. Automated
test input generation for android: Are we there yet? In Proceedings of the 2015th
International Conference on Automated Software Engineering, pages 429–440, 2015.

[21] Marco Cova, Christopher Kruegel, and Giovanni Vigna. Detection and analysis
of drive-by-download attacks and malicious javascript code. In Proceedings of
the 19th International Conference on World Wide Web, WWW ’10, pages 281–290,
2010.

[22] Jonathan Crussell, Ryan Stevens, and Hao Chen. Madfraud: Investigating ad
fraud in android applications. In Proceedings of the 12th annual international
conference on Mobile systems, applications, and services, pages 123–134. ACM,
2014.

[23] Daoyoudao. Daoyoudao-mobile advertising. http://www.daoyoudao.com/dsp,
2019.

[24] Erik Derr, Sven Bugiel, Sascha Fahl, Yasemin Acar, and Michael Backes. Keep me
updated: An empirical study of third-party library updatability on android. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, pages 2187–2200, 2017.

[25] Shivang Desai. Malicious android ads leading to drive by down-
loads. https://www.zscaler.com/blogs/research/malicious-android-ads-leading-
drive-downloads, 2017.

[26] Android Developers. Monkeyrunner. https://developer.android.com/studio/test/
monkeyrunner/index.html, 2017.

[27] Android Developers. Profile your layout with hierarchy viewer.
https://developer.android.com/studio/profile/hierarchy-viewer.html, 2017.

[28] AndroidDevelopers. Uiautomator. https://developer.android.com/training/testing/ui-
testing/uiautomator-testing.html, 2017.

[29] DIGIDAY. The state of mobile advertising. https://digiday.com/marketing/state-
mobile-advertising/, 2017.

[30] Samuel Dodge, Jiu Xu, and Björn Stenger. Parsing floor plan images. In 2017
Fifteenth IAPR International Conference on Machine Vision Applications (MVA),
pages 358–361. IEEE, 2017.

[31] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming
Liu, Guoai Xu, and Jacques Klein. Frauddroid: Automated ad fraud detection for

android apps. In The 26th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018), 2018.

[32] MARIA GERSEN. Mobile ad fraud: Definition, types, detection, 2016.
[33] Google. Healthcare and medicines - advertising policies help.

https://support.google.com/adspolicy/answer/176031, 2019.
[34] Google. Vision ai | derive image insights via ml | cloud vision api | google

cloud. https://cloud.google.com/vision/#industry-leading-accuracy-for-image-
understanding, 2019.

[35] Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. Unsafe
exposure analysis of mobile in-app advertisements. In Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile Networks, pages
101–112. ACM, 2012.

[36] Robotium Developers Group. Robotium.
https://github.com/RobotiumTech/robotium, 2017.

[37] Rayna Hollander. Two-thirds of the world’s population are now connected
by mobile devices. https://www.businessinsider.com/world-population-mobile-
devices-2017-9/?r=AU&IR=T, 2017.

[38] MARSHALL HONOROF. Malicious web ad infecting android phones.
https://www.tomsguide.com/us/malvertising-lock-android-phones,news-
25255.html, 2017.

[39] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques
Klein. Automated testing of android apps: A systematic literature review. IEEE
Transactions on Reliability, 2018.

[40] Selena Larson. Spammy ads that hijack your smartphone are now a virtual plague.
https://readwrite.com/2014/05/15/app-redirects-mobile-spam-ads/, 2017.

[41] Eric Lawrence. Understanding fiddlerscript.
https://www.telerik.com/blogs/understanding-fiddlerscript, 2013.

[42] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. An investigation
into the use of common libraries in android apps. In The 23rd IEEE International
Conference on Software Analysis, Evolution, and Reengineering (SANER 2016), 2016.

[43] Li Li, Jun Gao, Médéric Hurier, Pingfan Kong, Tegawendé F Bissyandé, Alexandre
Bartel, Jacques Klein, and Yves Le Traon. Androzoo++: Collecting millions of
android apps and their metadata for the research community. arXiv preprint
arXiv:1709.05281, 2017.

[44] Menghao Li, Wei Wang, Pei Wang, Shuai Wang, Dinghao Wu, Jian Liu, Rui
Xue, and Wei Huo. Libd: scalable and precise third-party library detection in
androidmarkets. In Software Engineering (ICSE), 2017 IEEE/ACM 39th International
Conference on, pages 335–346. IEEE, 2017.

[45] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen. Droidbot: a lightweight
ui-guided test input generator for android. In Software Engineering Companion
(ICSE-C), 2017 IEEE/ACM 39th International Conference on, pages 23–26. IEEE,
2017.

[46] Zhou Li, Kehuan Zhang, Yinglian Xie, Fang Yu, and XiaoFeng Wang. Knowing
your enemy: Understanding and detecting malicious web advertising. In Proceed-
ings of the 2012 ACM Conference on Computer and Communications Security, CCS
’12, pages 674–686, 2012.

[47] Yu-Chun Lin, Hung-Wei Tseng, and Chiou-Shann Fuh. Pornography detection
using support vector machine. In 16th IPPR Conference on Computer Vision,
Graphics and Image Processing (CVGIP 2003), volume 19, pages 123–130, 2003.

[48] Martina Lindorfer, Matthias Neugschwandtner, Lukas Weichselbaum, Yanick
Fratantonio, Victor Van Der Veen, and Christian Platzer. Andrubis–1,000,000
apps later: A view on current android malware behaviors. In Building Analysis
Datasets and Gathering Experience Returns for Security (BADGERS), 2014 Third
International Workshop on, pages 3–17. IEEE, 2014.

[49] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. Decaf: Detecting and
characterizing ad fraud in mobile apps. In NSDI, pages 57–70, 2014.

[50] Long Lu, Vinod Yegneswaran, Phillip Porras, and Wenke Lee. Blade: An attack-
agnostic approach for preventing drive-by malware infections. In Proceedings of
the 17th ACM Conference on Computer and Communications Security, CCS ’10,
pages 440–450, 2010.

[51] Ziang Ma, Haoyu Wang, Yao Guo, and Xiangqun Chen. Libradar: fast and
accurate detection of third-party libraries in android apps. In Proceedings of the
38th international conference on software engineering companion, pages 653–656.
ACM, 2016.

[52] Jorge A Marcial-Basilio, Gualberto Aguilar-Torres, Gabriel Sánchez-Pérez, L Ka-
rina Toscano-Medina, and Hector M Perez-Meana. Detection of pornographic
digital images. International journal of computers, 5(2):298–305, 2011.

[53] Huawei Market. Huawei market app developer policy.
http://developer.huawei.com/consumer/cn/devservice/develop/mobile, 2018.

[54] Tencent Myapp Market. Tencent myapp market app developer policy.
http://open.qq.com/, 2018.

[55] Masoud Mazloom, Robert Rietveld, Stevan Rudinac, Marcel Worring, and
Willemijn Van Dolen. Multimodal popularity prediction of brand-related so-
cial media posts. In Proceedings of the 24th ACM international conference on
Multimedia, pages 197–201. ACM, 2016.

[56] H. Mekky, R. Torres, Z. Zhang, S. Saha, and A. Nucci. Detecting malicious http
redirections using trees of user browsing activity. In IEEE INFOCOM 2014 - IEEE
Conference on Computer Communications, pages 1159–1167, April 2014.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’20, April. 20–24, 2020, Taipei Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[57] Mondovo. The most searched casino keywords in google | mondovo.
https://www.mondovo.com/keywords/casino-keywords, 2019.

[58] SumanNath. Madscope: Characterizingmobile in-app targeted ads. In Proceedings
of the 13th Annual International Conference on Mobile Systems, Applications, and
Services, pages 59–73. ACM, 2015.

[59] Paul Pearce, Adrienne Porter Felt, Gabriel Nunez, and David Wagner. Addroid:
Privilege separation for applications and advertisers in android. In Proceedings of
the 7th ACM Symposium on Information, Computer and Communications Security,
pages 71–72. Acm, 2012.

[60] Vaibhav Rastogi, Rui Shao, Yan Chen, Xiang Pan, Shihong Zou, and Ryan Ri-
ley. Are these ads safe: Detecting hidden attacks through the mobile app-web
interfaces. In NDSS, 2016.

[61] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look
once: Unified, real-time object detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–788, 2016.

[62] Rui Shao, Vaibhav Rastogi, Yan Chen, Xiang Pan, Guanyu Guo, Shihong Zou, and
Ryan Riley. Understanding in-app ads and detecting hidden attacks through the
mobile app-web interface. IEEE Transactions on Mobile Computing, 17(11):2675–
2688, 2018.

[63] Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. What mobile ads know about
mobile users. In NDSS, 2016.

[64] Gianluca Stringhini, Christopher Kruegel, and Giovanni Vigna. Shady paths:
Leveraging surfing crowds to detect malicious web pages. In Proceedings of the

2013 ACM SIGSAC Conference on Computer & Communications Security, CCS
’13, pages 133–144, 2013.

[65] Guillermo Suarez-Tangil and Gianluca Stringhini. Eight years of rider measure-
ment in the android malware ecosystem: Evolution and lessons learned. arXiv
preprint arXiv:1801.08115, 2018.

[66] Telerik. Fiddler - free web debugging proxy - telerik.
https://www.telerik.com/fiddler, 2019.

[67] Adrian Ulges and Armin Stahl. Automatic detection of child pornography using
color visual words. In Multimedia and Expo (ICME), 2011 IEEE International
Conference on, pages 1–6. IEEE, 2011.

[68] Timothy Vidas and Nicolas Christin. Evading android runtime analysis via
sandbox detection. In Proceedings of the 9th ACM symposium on Information,
computer and communications security, pages 447–458. ACM, 2014.

[69] Eliana Vuijsje. Malvertising: A profound threat to mobile advertis-
ing. https://www.blog.geoedge.com/single-post/2016/05/10/Malvertising-A-
Profound-Threat-to-Mobile-Advertising, 2016.

[70] Wandoujia. Wandoujia (ali app) developer policy.
http://aliapp.open.uc.cn/wiki/?p=140, 2018.

[71] Haoyu Wang, Hao Li, Li Li, Yao Guo, and Guoai Xu. Why are android apps
removed from google play? a large-scale empirical study. In The 15th International
Conference on Mining Software Repositories (MSR 2018), 2018.

12

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Motivation and Categorization
	3.1 Motivating Example
	3.2 Categorization of Devious Ad Contents
	3.3 Challenges

	4 Approach
	4.1 Network Traffic Collection
	4.2 Ad Content Extraction
	4.3 Ad Deviousness Detection
	4.4 Implementation

	5 Evaluation
	5.1 Dataset Construction
	5.2 Harvested Ad Content
	5.3 RQ1: Overall Results
	5.4 RQ2: Effectiveness of the HTTP hooking
	5.5 RQ3: Performance Evaluation

	6 Discussions
	7 Related Work
	8 Conclusion
	References

