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Abstract—Attackers leverage memory corruption vulnerabil-
ities to establish primitives for reading from or writing to the
address space of the vulnerable process. These primitives form
the foundation for code-reuse and data-oriented attacks. While
various defenses against the former class of attacks have proven
effective, mitigation of the latter remains an open problem.

In this paper, we identify various shortcomings of the x86
architecture regarding memory isolation, and leverage virtual-
ization to build an effective defense against data-oriented attacks.
We implement xMP, which consists of (in-guest) selective memory
protection primitives that equip VMs with the ability to isolate
sensitive data in user or kernel space into disjoint protection
domains. We interface the Xen altp2m subsystem with the Linux
memory management system, lending VMs the flexibility to define
custom policies. Contrary to conventional approaches, xMP takes
advantage of virtualization extensions, but after initialization,
it does not require any hypervisor intervention. To ensure the
integrity of in-kernel management information, and pointers to
sensitive data within protection domains, xMP protects pointers
with HMACs bound to an immutable context, so that integrity
validation succeeds only in the right context. We have applied
xMP to fortify the page tables and process credentials of the
Linux kernel, as well as sensitive data in various user-space
applications. Overall, our evaluation shows that xMP introduces
minimal overhead for real-world workloads and applications, and
offers effective protection against data-oriented attacks.

I. INTRODUCTION

Memory-safety attacks have only become better over
time [1]: during the past three decades, data-oriented at-
tacks [2] have evolved from a theoretical exercise [3] to
serious threats [4]–[9]. Therefore, the everlasting race be-
tween attackers and defenders continues. In the past, we
have witnessed a plethora of effective security mechanisms
that urged attackers to investigate new directions and ex-
ploit less explored corners of various systems. Specifically,
recent advances in Control-Flow Integrity (CFI) [10]–[14],
Code-Pointer Integrity (CPI) [15], [16], and code diversifi-
cation [17]–[19] have significantly raised the bar for code-
reuse attacks. In fact, CFI mechanisms have been adopted by
Microsoft [20], Google [21], and LLVM [22], forcing attackers
to explore the uncharted world of data-oriented exploitation.

Code-reuse attacks chain short code sequences, dubbed
gadgets, to hijack an application’s control-flow. It is sufficient
to overwrite one control-flow structure, such as a function
pointer, or a return address on the stack, with the start of
a crafted gadget chain, to cause a target application to per-
form arbitrary computation. In contrast, data-oriented attacks
completely avoid changes to the control flow. Instead, this
class of attacks aims to modify non-control data to cause the
application to obey the attacker’s intentions [7]–[9]. Typically,

an attacker leverages memory corruption vulnerabilities that
enable arbitrary read or write primitives to take control over
the application’s data. Stitching together a chain of data-
oriented gadgets, which operate on data only, allows an
attacker to either disclose sensitive information or escalate
privileges, without violating an application’s control flow. In
this way, data-oriented attacks remain under the radar, despite
the presence of code-reuse mitigation techniques, and can have
disastrous consequences [5]. We anticipate further growth in
this direction, in the near future, and emphasize the need for
practical primitives that eliminate such threats in advance.

Researchers have suggested different strategies to counter
data-oriented attacks. For instance, Data-Flow Integrity
(DFI) [23] schemes dynamically track a program’s data flow.
Similarly, by introducing memory safety to the C/C++ pro-
gramming language, it becomes possible to completely elimi-
nate memory corruption vulnerabilities [24]–[27]. While both
directions have the potential to thwart data-oriented attacks,
they lack practicality due to high performance overhead, or
suffer from compatibility issues with legacy code. Therefore,
instead of enforcing the integrity of the data flow, researchers
have started exploring isolation techniques that govern access
to sensitive code and data regions [28]–[30]. Still, most ap-
proaches are limited to user space, focus on merely protecting
a single data structure, or rely on policies enforced by a
hypervisor.

In this paper, we leverage modern virtualization extensions
(available on Intel CPUs) to establish selective memory pro-
tection (xMP) primitives that have the capability of thwarting
data-oriented attacks. Instead of enhancing a hypervisor with
the semantic knowledge required to enforce memory isolation,
we take advantage of Intel’s Extended Page Table pointer
(EPTP) switching capability to manage different views on
guest physical memory, from inside a VM, without any
interaction with the underlying hypervisor. For this, we extend
Xen altp2m [31], [32] and the Linux memory management
system to enable the selective protection of sensitive data
in user or kernel space by isolating it in disjoint protection
domains that are not subject to the limited access permissions
of the x86 Memory Management Unit (MMU).1 A powerful
attacker with arbitrary read and write memory primitives
cannot access the fortified data without first having to enter
the corresponding protection domain. Furthermore, we equip
in-kernel management information and pointers to sensitive
data in protection domains with authentication codes, whose

1In this paper, we refer to both x86 and x86-64 as the x86 architecture.
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integrity is bound to a specific context. This allows xMP to
protect pointers from illegal modifications and hence obstruct
data-oriented attacks that target the fortified data.

We use xMP to fortify two sensitive kernel data structures
that are vital for the system’s security, yet often disregarded
by defense mechanisms: page tables and process credentials.
In addition, we demonstrate the generality of xMP by guard-
ing sensitive data in common, security-critical (user-space)
libraries and applications. Lastly, in all cases, we evaluate the
performance and effectiveness of our xMP primitives.

In summary, we make the following contributions:
• We present techniques for combining Intel’s EPTP

switching and Xen altp2m to control different guest
physical memory views, and isolate data into disjoint
protection domains.

• We extend the Linux kernel to implement xMP, an
in-guest selective memory isolation framework for the
protection of sensitive data against data-oriented attacks
in both user and kernel space.

• We apply xMP to guard page tables and process creden-
tials, as well as sensitive data in user-space applications,
with minimal performance overhead.

II. BACKGROUND

Both user and kernel space maintain sensitive data whose
integrity must be protected by all means. Memory corruption
vulnerabilities facilitate arbitrary read and write primitives,
which are key to privilege escalation and data disclosure
via code-reuse and data-oriented attacks. Effective protection
against the former kind of attacks is primarily provided by
CFI [33], CPI [15], [16], and code diversification [34], [35].
Yet, there is no practical defense against data-oriented attacks.

In this section, we introduce Memory Protection Keys [36],
Intel’s extension to the x86 Instruction Set Architecture (ISA)
for fine-grained memory isolation, which can challenge data-
oriented attacks in user space. Furthermore, we present the
Xen altp2m subsystem [31], [32] that leverages Intel’s virtu-
alization extensions and sets the ground for selective memory
protection primitives that equip software developers with the
ability to obstruct data-oriented attacks targeting both user and
kernel space.

A. Memory Protection Keys

In 2015, Intel announced an extension to the x86 ISA,
called Intel Memory Protection Keys (MPK), for establishing
a means for hardening access to user space pages (i.e.,
memory pages with bit U/S = 1 in the respective page table
entries) [36], [37]. Intel MPK supplements the general paging
mechanism by further restricting memory access permissions.
In particular, each paging structure entry dedicates four bits
that associate virtual memory pages with one of a total of
16 memory protection domains. A protection domain can be
regarded as a set of pages whose access permissions are
controlled by the same protection key (PKEY). User-space
processes control access permissions of each PKEY through

the 32-bit PKRU register. Specifically, MPK allows different
memory protection keys to be simultaneously active, and page
table entries to be paired with different keys that further restrict
the memory permissions of the associated page. For each
PKEY, the thread-local PKRU register holds two bits (write
disable and access disable) that define the access permissions
of the corresponding protection domain. Data accesses to
protection domains are thus restricted by both the protection
key and page table access permissions. Intel MPK allows
threads to individually partition memory that belongs to their
address space into 16 (at most) protection domains, and to
freely constrain access to individual domains without affecting
domains defined by other threads.

One of the main benefits of Intel MPK is that it allows user
threads to independently and efficiently harden the permissions
of potentially large memory regions. For instance, a thread
can revoke write access from an entire protection domain,
without switching to kernel space, walking and adjusting page
table entries, and invalidating TLB entries to enforce the
changes; instead, the thread achieves the desired behavior by
only setting the write disable bit of the corresponding PKEY
in the PKRU register. Another benefit of this technology is
that it extends, or rather refines, access control capabilities of
page tables on x86. Through Intel MPK, a thread can enforce
(i) execute-only code pages [18], [38] or (ii) non-readable,
yet present data pages [30] by setting the access disable bit of
the associated protection key. Since the MMU on x86 lacks
the ability to enforce such policies via page tables, mapped
code and data pages can become subject to code-reuse [39]
and data-oriented attacks [4], [5], [7], [40], [41] that result
from memory disclosures. The introduced capabilities provide
new primitives for thwarting data-oriented attacks, without
sacrificing performance and practicality [11], or resorting to
architectural quirks [42] and virtualization [14], [18], [43].

Although Intel announced MPK back in 2015 [37], the
feature has been introduced only recently, and to just one CPU
class dedicated to servers (Skylake-SP Xeon). Hence, the need
for a similar isolation feature on desktop, mobile, and legacy
server CPUs remains. Another issue is that attackers with the
ability to arbitrarily corrupt kernel memory can (i) modify the
per-thread state (in kernel space) holding access permissions of
individual protection domains, or (ii) alter protection domain
bits in page table entries. This allows adversaries to deactivate
restrictions that otherwise are enforced by the MMU. Lastly,
the isolation capabilities of Intel MPK are geared towards
user-space pages. Sensitive data in kernel space thus remains
prone to unauthorized access. In fact, there is no equivalent
mechanism for protecting kernel memory from adversaries
armed with arbitrary read and write primitives. Consequently,
there is a need for alternative memory protection primitives,
the creation of which is the main focus of this work.

B. The Xen altp2m Subsystem

Modern Virtual Machine Monitors (VMMs) leverage Sec-
ond Level Address Translation (SLAT) to isolate physical
memory that is reserved for VMs [36]. In addition to in-
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guest page tables that translate guest virtual to guest physical
addresses, the supplementary SLAT tables translate guest
physical to host physical memory. Unauthorized accesses to
guest physical memory, which is either not mapped or lacks
privileges in the SLAT table entries, trap into the VMM [44],
[45]. This lends VMMs strong memory isolation properties.
As SLAT tables are solely maintained by the VMM, it has
the privilege to fully control the VM’s view on its physical
memory [31], [32], [46], [47].

The physical to machine subsystem (p2m) of the Xen
hypervisor [45], [48] employs SLAT to define the guest’s view
of the physical memory that is perceived by all virtual CPUs
(vCPUs); modern virtualization solutions employ only one set
of SLAT tables, as the static view on the physical memory
changes only in rare situations. Still, by restricting access
to individual page frames, security mechanisms can use Xen
p2m to enforce memory access policies on the guest’s phys-
ical memory. This allows protecting in-guest kernel memory
(which may hold sensitive information) from illegal accesses.

Yet, protecting data through a single global view (i) incurs
a significant overhead and (ii) is prone to race conditions
in multi-vCPU environments. Consider a scenario in which a
guest advises the VMM to read-protect sensitive information
on a specific page. By revoking read permissions in the SLAT
tables, illegal read accesses to the protected page, e.g., origi-
nating through malicious memory disclosure attempts, would
violate memory permissions and thus trap into the VMM.
At the same time, for legal guest accesses to the protected
region, the VMM has to temporarily relax permissions of the
particular page frame; every time the guest requires access to
the sensitive information, it has to instruct the VMM to walk
the SLAT tables—an expensive operation. More importantly,
by temporarily relaxing permissions in the global view, the
VMM creates a window in which other vCPUs can freely
access the sensitive data without notifying the VMM.

The Xen alternate p2m subsystem (altp2m) [31], [32]
addresses the above issues. Instead of using a single, global
view, Xen altp2m provides the necessary means to maintain
and switch among different views. As the views can be
assigned to each vCPU individually, access permissions in
one view can be safely relaxed without affecting the active
views of other vCPUs. In fact, instead of walking the SLAT
tables to relax memory permissions, Xen altp2m allows
switching to another, less restrictive view. Both external [31],
[32] and internal monitors [28], [49] use the altp2m interface
to allocate, switch, and destroy altp2m views. Although
altp2m introduces a powerful means to rapidly change the
guest’s memory view, it requires additional hardware support
to establish primitives that can be used by guests for isolating
selected memory regions.

C. In-Guest EPT Management
The intention behind the Xen altp2m subsystem has been

to add support for the Intel virtualization extension that allows
VMs to switch among Extended Page Tables (EPTs).2 Specif-

2EPTs refer to Intel’s implementation of SLAT tables [36].

ically, Intel introduced the unprivileged VMFUNC instruction
to enable a VM to switch among different predefined EPTs
without involving the VMM—although Xen altp2m has been
implemented for Intel and ARM [32], in-guest switching of
different altp2m views is available to Intel only. Intel uses
a hardware-defined data structure, Virtual Machine Control
Structure (VMCS), to maintain the host’s and the VM’s state
per vCPU. Further, the VMCS defines an Extended Page Table
pointer (EPTP) to locate the root of the EPT. In fact, the
VMCS has capacity for up to 512 EPTPs, each representing
a different view of the guest’s physical memory; by using the
VMFUNC, a guest can choose among 512 different EPTs.

To pick up the above scenario, the guest can instruct the
system to isolate and relax permissions to selected memory
regions, on-demand, using Xen’s altp2m EPTP switching.
Furthermore, combined with another feature, i.e., the Virtual-
ization Exceptions (#VE), the Xen altp2m allows in-guest
agents to take over EPT management tasks. More precisely,
the guest can register a dedicated exception handler that is
responsible for handling EPT access violations; Instead of
trapping into the VMM, the guest can intercept EPT violations
and try to handle them inside a (guest-resident) #VE handler.

III. THREAT MODEL

We expect the system to be protected from code injec-
tion [50] through Data Execution Prevention (DEP) or other
proper W^X policy enforcement, and to employ Address
Space Layout Randomization (ASLR) both in kernel [51],
[52] and user space [17], [53]. Also, we assume that the
kernel is protected against return-to-user (ret2usr) [54] attacks
by means of SMEP/SMAP [36], [55], [56]; other hardening
features, such as Kernel Page Table Isolation (KPTI) [57],
[58], stack smashing protection [59], and toolchain-based
hardening [60], are orthogonal to xMP—we neither require
nor preclude the use of such features. Moreover, we anticipate
protection against state-of-the-art code-reuse attacks [6], [61]–
[63] via either (i) fine-grained CFI [33] (in kernel [64] and
user space [65]), coupled with a shadow stack [66], or (ii) fine-
grained code diversification [34], [35], and with execute-only
memory (available to both kernel [38] and user space [18]).

Assuming the above state-of-the-art protections restrict an
attacker’s capability to achieve arbitrary code execution, we
focus on defending against attacks that leak or modify sensitive
data in user or kernel memory [18], [38], by transforming
memory corruption vulnerabilities into arbitrary read and
write primitives. Attackers can leverage such primitives to
mount data-oriented attacks [9], [41] that (i) disclose sensitive
information, such as an application’s cryptographic material,
or (ii) modify sensitive data structures, such as page tables or
process credentials.

IV. DESIGN

Memory corruption vulnerabilities form the foundation for
data-oriented attacks. As such, there is a need for practical
primitives that can protect sensitive data from such attacks.
To that end, we identify the following requirements:
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¶ Partitioning of sensitive kernel and user -space memory
regions into individual protection domains.

· Isolation of protection domains through fine-grained ac-
cess control capabilities.

¸ Context-bound integrity of pointers to protection domains.
Although the x86 architecture allows for memory partitioning
through segmentation or paging ¶, it lacks the fine-grained
access control capabilities that are required for effective mem-
ory isolation · (e.g., there is no notion of non-readable
pages; only non-present pages cannot be read). While pre-
vious work isolates user-space memory by leveraging unused,
higher-privileged x86 protection rings [67], isolation of kernel
memory is primarily achieved by Software-Fault Isolation
(SFI) solutions [38]. Even though the page fault handler
could be extended to interpret selected non-present pages as
non-readable, switching permissions of memory regions that
are shared among threads or processes on different CPUs
can introduce race conditions: granting access to protection
domains by relaxing permissions inside the global page tables
may reveal sensitive memory contents to the remaining CPUs.
Besides, each memory access permission switch would require
walking the page tables, and thus frequent switching between
a large number of protected pages would incur a high run-time
overhead. Lastly, the modern x86 architecture lacks any sup-
port for immutable pointers. Although ARMv8.3 introduced
the Pointer Authentication Code (PAC) [68] extension, there
is no similar feature on x86. As such, the x86 architecture
does not meet requirements · and ¸.

In this work, we fill this gap by introducing selected memory
protection (xMP) primitives that leverage virtualization to
define efficient memory protection domains in both kernel
and user space, enforce fine-grained memory permissions
on selected protection domains, and protect the integrity of
pointers to those domains (Figure 1). In contrast to common
virtualization-based hardening frameworks that resort to addi-
tional logic introduced into the VMM to enforce the envis-
aged properties, xMP does not require any interaction with
the VMM at run-time. In the following, we introduce xMP
primitives and show how they can be used to build practical
and effective defenses against real-world data-oriented attacks
in both user and kernel space. We base xMP on top of x86
and Xen [48], as it relies on virtualization extensions that are
exclusive to the Intel architecture and are already used by Xen.

A. Memory Partitioning through Protection Domains

To achieve meaningful protection, applications may require
multiple disjoint memory protection domains that cannot be
accessible at the same time. For instance, a protection domain
that holds the kernel’s hardware encryption key must not be
accessible upon entering a protection domain containing the
private key of a user-space application. The same applies to
multi-threaded applications in which each thread maintains its
own session key that must not be accessible by other threads.

We employ Xen altp2m as a building block for providing
multiple disjoint protection domains (§ II-B). A protection
domain may exist in one of two states, the permissions of
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Figure 1. xMP uses different Xen altp2m views, each mapping guest frames
to machine frames with different access permissions, to partition memory
into isolated protection domains. By additionally equipping data pointers to
protected memory with HMACs, we establish context-bound pointer integrity.

which are configured as desired. In the protected state, the
most restrictive permissions are enforced, to prevent data
leakage or modification. In the relaxed state, the permissions
are temporarily relaxed to enable legitimate access to the
protected data as needed by applications or the kernel.

The straightforward approach of associating an altp2m
view with each protection domain is not feasible because only
a single altp2m view can be active at a given time. Instead, to
enforce the access restrictions of all protection domains in each
altp2m view, we propagate the permissions of each domain
across all available altp2m views. Setting up a protection
domain requires at least two altp2m views. Regardless of
the number of protection domains, we dedicate one view, the
restricted view, to unify the memory access restrictions of
all protection domains. We configure this view as the default
on every vCPU, as it collectively enforces the restrictions of
all protection domains. We use the second view to relax the
restrictions of (i.e., unprotect) a given protection domain and
to allow legitimate access to its data. We refer to this view
as pdomain[id], with id referring to the protection domain of
this view. By entering pdomain[id], the system switches to
the altp2m view id to bring the protection domain into its
relaxed state—crucially, all other protection domains remain
in their protected state. By switching to the restricted view,
the system switches all domains to their protected state.

Assuming n protection domains, we define n+ 1 altp2m
views to accommodate them. Figure 2 illustrates a multi-
domain environment with pdomain[n] as the currently active
domain (the page frames of each domain are denoted by the
darkest shade). The permissions of pdomain[n] in its relaxed
and protected states are r-x and --x, respectively. The --x
permissions of pdomain[n]’s protected state are enforced not
only by the restricted view, but also by all other protection
domains ({pdomain[j] | ∀j ∈ {1, ..., n} ∧ j 6= i}). This
allows us to partition the guest’s physical memory into mul-
tiple protection domains, and to impose fine-grained memory
restrictions on each of them, satisfying requirement ¶.

An alternative approach to using altp2m would be to
leverage Intel MPK (§ II-A). Although MPK meets require-
ments ¶ and ·, unfortunately it is applicable only to user-
space applications, and it cannot withstand abuse by memory
corruption vulnerabilities targeting the kernel. Furthermore,
even when focusing only on user-space protection using MPK,
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attackers can still disclose sensitive data in multi-threaded
environments. Given that threads share the same page tables,
a controlled memory corruption vulnerability in a malicious
thread can gain access to protected data as soon as another
benign thread relaxes the permissions of a protection domain.
Due to the limited capabilities of MPK, and since Intel has
only recently started shipping server CPUs with MPK, we
opted for a solution that works on both recent and legacy
systems, and is applicable for the protection of both user- and
kernel-space memory.

B. Isolation of Protection Domains

We establish a memory isolation primitive that empowers
guests to enforce fine-grained permissions on the guest’s page
frames. To achieve this, we extend the altp2m interface in
Linux to release the full potential of altp2m for use from
inside guest VMs. Specifically, we introduce hypercalls that
trigger the VMM to configure page frames with requested ac-
cess permissions on the VM’s behalf. We further use altp2m
in combination with Intel’s in-guest EPTP switching and the
#VE feature to allow in-guest agents to take over several EPT
management tasks (§ II-C). This setup reduces the number of
VMM interventions and thus improves performance. Conse-
quently, we do not have to outsource logic to the VMM or
to an external monitor, as the scheme provides flexibility for
defining new memory access policies from inside the guest.

Consider a scenario in which an in-guest application handles
sensitive data, such as passwords, cookies, or cryptographic
keys. To protect this data, the application can use the pre-
viously defined memory partitioning primitives that leverage
altp2m to allocate a protection domain, e.g, pdomain[1] in
Figure 2: in addition to pdomain[1] holding original access
permissions to the guest’s physical memory, our memory iso-
lation primitive removes read and write permissions from the
page frame in the restricted view (and remaining pdomains).
This way, unauthorized read and write attempts outside pdo-
main[1] will violate the restricted access permissions. Instead
of trapping into the VMM, any illegal access traps into the
in-guest #VE-handler, which in turn generates a segmentation
fault. Upon legal accesses, instead of instructing the VMM
to walk the EPTs to relax permissions, the guest executes
the VMFUNC instruction to switch to the less-restrictive pdo-
main[1] and carry out the request. As soon as the application

completes its request, it will execute VMFUNC again to switch
back to the restricted view and continue execution.

This scheme combines the best of both worlds: flexibility
in defining policies, and fine-grained permissions that are not
available to the traditional x86 MMU. This primitive allows
in-guest applications to revoke read and write permissions on
data pages, without making them non-present, and to configure
code pages as execute-only, hence satisfying requirement ·.

C. Context-bound Pointer Integrity

For complete protection, we have to ensure the integrity
of pointers to sensitive data within protection domains. Oth-
erwise, by exploiting a memory corruption vulnerability, ad-
versaries could redirect pointers to (i) injected, attacker-
controlled objects outside the protected domain, or (ii) ex-
isting, high-privileged objects inside the protection domain.

As x86 lacks support for pointer integrity (in contrast to
ARM, in which PAC [68], [69] was recently introduced),
we protect pointers to objects in protection domains in
software. We leverage the Linux kernel implementation of
SipHash [70] to compute Keyed-Hash Message Authentica-
tion Codes (HMACs), which we use to authenticate selected
pointers. SipHash is a cryptographically strong family of pseu-
dorandom functions. Contrary to other secure hash functions
(including the SHA family), SipHash is optimized for short
inputs, such as pointers, and thus achieves higher performance.
To reduce the probability of collisions, SipHash uses a 128-
bit secret key. The security of SipHash is limited by its key
and output size. Yet, with pointer integrity, the attacker has
only one chance to guess the correct value; otherwise, the
application will crash and the key will be re-generated.

To ensure that pointers cannot be illegally redirected to
existing objects, we bind pointers to a specific context that
is unique and immutable. The task_struct data structure
holds thread context information and is unique to each thread
on the system. As such, we can bind pointers to sensitive, task-
specific data located in a protection domain to the address of
the given thread’s task_struct instance.

Modern x86 processors use a configurable number of page
table levels that define the size of virtual addresses. On a
system with four levels of page tables, addresses occupy the
first 48 least-significant bits. The remaining 16 bits are sign-
extended with a value dependent on the privilege level: they
are filled with ones in kernel space and with zeros in user
space [71]. This allows us to reuse the unused, sign-extended
part of virtual addresses and to truncate the resulting HMAC
to 15 bits. At the same time, we can use the most-significant
bit 63 of a canonical address to determine its affiliation—if bit
63 is set, the pointer references kernel memory. This allows
us to establish pointer integrity and ensure that pointers can
be used only in the right context ¸.

Contrary to ARM PAC, instead of storing keys in registers,
we maintain one SipHash key per protection domain in mem-
ory. After generating a key for a given protection domain, we
grant the page holding the key read-only access permissions
inside the particular domain (all other domains cannot access
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the page in question). In addition, we configure Xen altp2m
so that every protection domain maps the same guest-physical
address to a different machine-physical address. Every time the
guest kernel enters a protection domain, it will use the key that
is dedicated to this domain (Figure 1). In fact, by reserving one
specific memory page for keys via the kernel’s linker script, we
allow the kernel to embed the address inside its code region as
an immediate operand that cannot be controlled by adversaries
(without additional means, code regions are immutable).

V. IMPLEMENTATION

We extended the Linux memory management system to
establish memory isolation capabilities that allow us to par-
tition ¶ selected memory regions into isolated · protection
domains. During the system boot process, once the kernel has
parsed the e820 memory map provided by BIOS/UEFI to
lay down a representation of the entire physical memory, it
abandons its early memory allocators and hands over control
to its core components. These consist of: (i) the (zoned) buddy
allocator, which manages physical memory; (ii) the slab
allocator, which allocates physically-contiguous memory in the
physmap region of the kernel space [71], and is typically
accessed via kmalloc; and (iii) the vmalloc allocator,
which returns memory in a separate region of kernel space, i.e.,
the vmalloc arena [38], which can be virtually-contiguous
but physically-scattered; both kmalloc and vmalloc use
the buddy allocator to acquire physical memory.

Note that (i) is responsible for managing (contiguous)
pages frames, (ii) manages memory in sub-page granularity,
and (iii) supports only page-multiple allocations. To provide
maximum flexibility, we extend both (i) and (ii) to selec-
tively shift allocated pages into dedicated protection domains
(Figure 3); (iii) is transparently supported by handling (i).
This essentially allows us to isolate either arbitrary pages or
entire slab caches. By additionally generating context-bound
authentication codes for pointers referencing objects residing
in the isolated memory, we meet all requirements ¶-¸.

A. Buddy Allocator

The Linux memory allocators use get-free-page (GFP_*)
flags to indicate the conditions, the location in memory (zone),
and the way the allocation will be handled [72]. For instance,
GFP_KERNEL, which is used for most in-kernel allocations,
is a collection of fine-granularity flags that indicate the default
settings for kernel allocations. To instruct the buddy allocator
to not only allocate a number of pages in a particular memory
zone, but also to place the allocation into a specific protection
domain, we extend the allocation flags. That is, we can inform
the allocator by adding the __GFP_PDOMAIN flag to any of
the system’s GFP allocation flags. This allows us to assign
an arbitrary number of pages in different memory zones with
fine-granularity memory access permissions. By additionally
encoding a protection domain index into the allocation flags,
the allocator receives sufficient information to inform the
underlying Xen altp2m subsystem to place the allocation
into a particular protection domain (Figure 3). This way, we
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Figure 3. Extensions to the slab and buddy allocator facilitate shifting
allocated pages and slabs into protection domains enforced by Xen altp2m.

can grant exclusive access permissions to all pages assigned
to the target protection domain. At the same time, we can
selectively withdraw access permissions to the allocated page
from all other domains (§ IV-A). As such, accesses to pages
inside the target domain become valid only after switching to
the associated guest memory view managed by Xen altp2m.

During assignment of allocated memory pages to protec-
tion domains, we record the __GFP_PDOMAIN flag into the
flags field of struct page, thereby enabling the buddy
allocator to reclaim fortified pages at a later point in time.

B. Slab Allocator

The slab allocator builds on top of the buddy allocator to
subdivide allocated pages into small, sub-page sized objects
(Figure 3), to reduce internal fragmentation that would oth-
erwise be introduced by the buddy allocator. More precisely,
the slab allocator maintains slab caches that are dedicated to
frequently used kernel objects of the same size [73]. E.g.,
the kernel uses a cache for all struct task_struct
instances. Such caches allow the kernel to allocate and free
objects in a very efficient way, without the need for explic-
itly retrieving and releasing memory for every kernel object
allocation. Historically, the Linux kernel has used three slab
allocator implementations: SLOB, SLAB, and SLUB, with the
latter being the default slab allocator in modern Linux kernels.

Every slab cache groups collections of continuous pages
into so-called slabs, which are sliced into small-sized objects.
Disregarding further slab architecture details, as the allocator
manages slabs in dedicated pages, this design allows us to
place selected slabs into isolated protection domains using the
underlying buddy allocator. To achieve this, we extend the slab
implementation so that we can provide the __GFP_PDOMAIN
flag and protection domain index on creation of the slab cache.
Consequently, every time the slab cache requests further pages
for its slabs, it causes the buddy allocator to shift the allocated
memory into the specified protection domain (§ V-A).

C. Switches across Execution Contexts

The Linux kernel is a preemptive, highly-parallel system
that must preserve the process- or thread-specific state on
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(i) context switches and (ii) interrupts. To endure context
switches, and also prevent other threads from accessing iso-
lated memory, it is essential to include the index of the thread’s
(open) protection domain into its persistent state.3

1) Context Switches: Generally, Operating Systems (OSes)
associate processes or threads with a dedicated data struc-
ture, the Process Control Block (PCB); a container for the
thread’s state that is saved and restored upon every context
switch. On Linux, the PCB is represented by the struct
task_struct. We extend task_struct with an addi-
tional field, namely pdomain_index_kernel, represent-
ing the protection domain the thread resides in at any point in
time. We dedicate this field to store the state of the protection
domain used in kernel space. By default, this field is initial-
ized with the index of the restricted view that accumulates
the restrictions enforced by every defined protection domain
(§ IV-A). A process with an active restricted view will not be
able to access the memory protected by any other protection
domain. The thread updates its pdomain_index_kernel
only when it enters or exits a protection domain. This way,
the kernel can safely interrupt the thread, preserve its currently
open protection domain, and schedule a different thread. In
fact, we extend the scheduler so that on every context switch
it switches to the saved protection domain of the thread that
is to be scheduled next. To counter switching to a potentially
corrupted pdomain_index_kernel, we bind this index to
the address of the task_struct instance in which it resides.
This allows us to verify the integrity and the context of the
index before entering the protection domain ¸ (§ IV-C). Since
adversaries cannot create valid authentication codes without
knowing the secret key, they will neither be able to forge the
authentication code of the index, nor reuse an existing authen-
tication code that is bound to a different task_struct.

2) Hardware Interrupts: Despite the per thread manage-
ment of active protection domains, interrupts can pause a
thread’s execution at arbitrary points. We ensure that access to
memory in any of the protection domains is restricted in the
interrupt context. To achieve this, we extend the prologue of
every interrupt handler and cause it to switch to the restricted
view. This way, we prevent potentially vulnerable interrupt
handlers from illegally accessing protected memory. This
strategy causes temporarily interrupted threads to enter the
restricted protection domain. Once the kernel returns control to
the interrupted thread, it will cause a memory access violation
when accessing the isolated memory. Yet, instead of trapping
into the VMM, the thread will trap into the in-guest #VE han-
dler (§ II-C). The #VE handler, much like a page fault handler,
verifies the thread’s eligibility and context-bound integrity by
authenticating the HMAC of its pdomain_index_kernel.
If the thread’s eligibility and the index’s integrity is given,
the handler enters the corresponding protection domain and
continues the thread’s execution. Otherwise, the #VE handler
causes a segmentation fault and terminates the thread.

3Threads in user space enter the kernel to handle system calls and
(a)synchronous interrupts. Specifically, upon interrupts, the kernel reuses the
task_struct of the interrupted thread, which must be handled with care.

3) Software Interrupts: The above extensions introduce a
restriction with regard to nested protection domains. Without
maintaining the state of nested domains, we require every
thread to close its active domain before opening another one;
by nesting protection domains, the state of the active domain
will be overwritten and lost. Although we can address this
requirement for threads in the process context, it becomes an
issue in the interrupt context: the former executes (kernel and
user space) threads, each tied to a different task_struct,
the latter reuses the task_struct of the interrupted threads.

In contrast to hardware interrupts that disrupt the system’s
execution at arbitrary locations, the kernel explicitly schedules
software interrupts (softirq) [74], e.g., after handling a
hardware interrupt or at the end of a system call. As soon as the
kernel selects a convenient time slot to schedule a softirq,
it will temporarily delay the execution of whichever process is
currently active and re-use its context for handling the pending
softirq. As such, the kernel handles softirq events at
seemingly arbitrary times and thus adds irregular delays to the
execution of the processes. Generally, work outsourced into a
softirq cannot access the state of a certain thread. Without
considerable adjustments of the softirq mechanism, there
is no way to associate a softirq with a specific thread on
behalf of which it is executed. This is because the softirq
executes in the context of an arbitrarily selected process.

The Linux kernel configures ten softirq vectors, with
one dedicated for the Read-Copy-Update (RCU) mecha-
nism [75]. A key feature of RCU is that every update is split
into (i) a removal and (ii) a reclamation phase. While (i)
removes references to data structures in parallel to readers,
(ii) releases the memory of removed objects. To free the ob-
ject’s memory, a caller registers a callback that is executed by
the dedicated softirq at a later point it time. If the callback
accesses and frees memory inside a protection domain, it must
first enter the associated domain. Yet, as the callback reuses
the task_struct instance of an arbitrary thread, it must
not update the thread’s index to its open protection domain.

To approach this issue, we leverage the callback-free RCU
feature of Linux (CONFIG_RCU_NOCB_CPU). Instead of
handling RCU callbacks in a softirq, the kernel dedicates a
thread to handle the work. This simplifies the management of
the thread-specific state of open protection domains, as we can
bind it to each task individually: if the thread responsible for
executing RCU callbacks needs to enter a specific protection
domain, it can do so without affecting other tasks.

D. User Space API

To counter unauthorized manipulation and information dis-
closure attacks, we grant user processes the ability to protect
selected memory regions; we extend the Linux kernel with four
new system calls that allow processes to use xMP in user space
(Figure 4). Specifically, applications can dynamically allocate
and maintain disjoint protection domains, in which sensitive
data can remain safe (¶-·). Further, we ensure that attackers
cannot illegally influence the process’ active protection domain
state by binding its integrity to the thread’s context (¸).
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Figure 4. User-space applications interact with the Linux kernel through
mprotect to configure independent protection domains.

Linux has provided an interface for Intel MPK since
kernel v4.9. This interface comprises three system calls,
sys_pkey_{alloc, free, mprotect}, backed by
libc wrapper functions for the allocation, freeing, and as-
signment of user space memory pages to protection keys.
Applications use the unprivileged WRPKU instruction to further
manage the memory access permissions of the corresponding
protection keys (§ II-A). Likewise, we implement the system
calls sys_pdomain_{alloc, free, mprotect} that
allow programmers to dynamically allocate and maintain dif-
ferent protection domains in user space. In fact, these system
calls implement functionality equivalent to Intel MPK on
Linux. As such, they can be used as a transparent alternative
on legacy systems without sufficient hardware support (¶-·).
On sys_pdomain_mprotect invocation, we reuse the bits
of the struct vm_area_struct reserved for Intel MPK,
and in particular, we tag the target virtual memory area
with the index of the protection domain. This allows us to
identify protected memory regions and release them from the
associated protection domain upon memory reclamation.

Contrary to the MPK implementation of Linux, we do
not use the unprivileged VMFUNC instruction in user space.
Instead, we provide an additional system call, namely
sys_pdomain_enter, which activates a previously allo-
cated protection domain. By calling this system call, the kernel
switches to the requested protection domain and updates the
state of the currently active protection domain. We save the
respective state inside the pdomain_index_user field of
mm_struct that is unique to every thread in user space. Also,
we bind this index to the address of mm_struct (¸). This
way, we enable the kernel to verify the integrity and context
of the protection domain index on every context switch—in
other words, the kernel has the means to detect unauthorized
modifications of this field and immediately terminate the
application. Note that, with regard to our threat model, we an-
ticipate orthogonal defenses in user space that severely restrain
attackers to data-oriented attacks (§ III). By further removing

VMFUNC instructions from user space, and mediating their
execution via sys_pdomain_enter, we avoid unnecessary
Return-Oriented Programming (ROP) (or similar code-reuse)
gadgets, which could be otherwise abused by adversaries to
illegally switch to arbitrary protection domains.

VI. USE CASES

In this section, we demonstrate the effectiveness and use-
fulness of xMP for protecting sensitive data in kernel and user
space. Specifically, we apply xMP to fortify page tables and
process credentials in the Linux kernel, as well as sensitive in-
process data in four security-critical applications and libraries.

A. Protecting Page Tables

With Supervisor Mode Execution Protection (SMEP) [55],
the kernel cannot execute code in user space; adversaries
have to first inject code into kernel memory to accomplish
their goal. Multiple vectors exist that allow attackers to (le-
gitimately) inject code into the kernel. In fact, system calls
use the routine copy_from_user to copy a user-controlled
(and potentially malicious) buffer into kernel memory. While
getting code into the kernel is easy, its execution is obstructed
by different security mechanisms. For instance, W⊕X with-
draws execute permissions from memory, holding the con-
tents copied from user space. In addition, defenses based on
information hiding, such as Kernel Space Address Layout
Randomization (KASLR) [52], further obstruct kernel attacks
but are known to be imperfect [39], [58], [76], [77]. Once
adversaries locate the injected code, they can abuse memory
corruption vulnerabilities, e.g., in device drivers or the kernel
itself, to compromise the system’s page tables [78]. This, in
turn, opens up the gate for code injection or kernel code
manipulation. Consequently, ensuring the integrity of page
tables is an essential requirement, which remains unfulfilled
through existing kernel hardening techniques [78]–[80].

Our goal is to leverage xMP to prevent adversaries from
illegally modifying (i) page table contents and (ii) pointers
to page tables. At the same time, xMP has to allow the kernel
to update page table structures from authorized locations. With
the exception of the initial page tables that are generated
during the early kernel boot stage, the kernel uses the buddy
allocator to allocate memory for new sets of page tables. Using
the buddy allocator, we move every memory page holding a
page table structure into a dedicated protection domain, to
which we grant read-write access permissions (§ V-A), and
limit the access of remaining domains to read-only. As the
kernel allocates the initial page tables statically, we manually
inform Xen altp2m to place affected guest-physical page
frames into the same domain. Every write access from outside
the dedicated protection domain results in an access violation
that terminates the process. Thus, we must grant access to the
fortified paging structures to kernel components responsible
for process creation and termination, and page fault handing
by enabling them to temporarily enter the protection domain.
This scheme does not disrupt the kernel’s functionality and
complies with requirements ¶ and ·.
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In addition, we extend the kernel’s process and thread cre-
ation functionality to protect the integrity of every pgd pointer
referencing the root of a page table hierarchy. We equip every
pgd pointer with an HMAC (§ IV-C), and verify its integrity
every time the pointer gets written to CR3 (the control register
holding the address of the page table root). This protects the
pointer from corruption: as long as adversaries do not know the
secret key, they cannot create a valid HMAC. Attackers cannot
read the secret key as it remains inaccessible from outside the
target domain. Attackers also cannot adjust the pointer to the
key, as its address is compiled as an immediate value into the
kernel’s code, and is thus immutable.

Still, we cannot bind the pgd to a specific thread context,
as kernel threads inherit the mm_struct of interrupted user
threads. This, however, does not weaken our protection. From
the attackers’ perspective, it is impossible to redirect the pgd
to a different location, as they do not know the key. One
attack scenario is to exchange the pgd pointer with a different
pgd that holds a valid authentication code for another existing
thread. Yet, this would not allow the attacker to inject a new
address space, but just crash the application. Note that while
we can chose to bind the pgd to the address of the associated
mm_struct, this would not increase its security. As such,
we achieve immutability of the page table pointer (¸).

We highlight that even with KPTI [58], [76] (the Meltdown
mitigation feature of Linux that avoids simultaneously map-
ping user and kernel space), it is possible to authenticate pgd
pointers. As KPTI employs two consecutive pages, with each
mapping the root of page tables to user or kernel space, we
always validate both pages by first normalizing the pgd to
reference the first of the two pages.

B. Protecting Process Credentials

Linux kernel credentials describe the properties of various
objects, that allow the kernel to enforce access control and
capability management. Consequently, they are often targeted
by data-oriented privilege escalation attacks.

Similarly to protecting paging structures, our goal is to
prevent adversaries from (i) illegally overwriting process
credentials in struct cred or (ii) redirecting the cred
pointer in task_struct to an injected or existing struct
cred instance with higher privileges. With the exception of
reference counts and keyrings, once initialized and committed,
process credentials do not change. Besides, a thread may only
modify its own credentials and cannot alter the credentials of
other threads. These properties establish inherent character-
istics for security policies. In fact, Linux Security Modules
(LSM) [81] introduce hooks at security-relevant locations
that rely upon the aforementioned invariants. For instance,
SELinux [82] and AppArmor [83] use these hooks to enforce
Mandatory Access Control (MAC). Similarly, we combine
our kernel memory protection primitives with LSM hooks to
prevent adversaries from corrupting process credentials.

Linux prepares the slab cache cred_jar to maintain
struct cred instances. By applying xMP to cred_jar,
we ensure that adversaries cannot directly overwrite the

contents of cred instances without first entering the asso-
ciated protection domain (§ V-B). As we check both the
integrity and context of the active protection domain index
(pdomain_index_kernel), adversaries cannot manipulate
the system to enter an invalid domain (§ V-C). At the same
time, we allow legitimate write access to struct cred
instances, e.g., to maintain the number of subscribers; we
guard such code sequences with primitives that enter and leave
the protection domain right before and after updating the data
structures. Consequently, we meet requirements ¶ and ·.

As every cred instance is uniquely assigned to a specific
task, we additionally bind the integrity of every cred pointer
to the associated task_struct during process creation. In
addition, we check both the integrity and the assigned context
to the specific task_struct inside relevant LSM hooks.
This ensures that every interaction related to access control
between user and kernel space via system calls is granted
access only to non-modified process credentials. Consequently,
we eliminate unauthorized updates to cred instances without
affecting normal operation, meeting requirement ¸.

C. Protecting Sensitive Process Data

An important factor for the deployment of security mecha-
nisms is their applicability and generality. To highlight this
property, we apply selective memory protection to guard
sensitive data in OpenSSL under Nginx, ssh-agent, mbed
TLS, and libsodium. In each case, we minimally adjust the
original memory allocation of the sensitive data, in order to
place them in individual pages, which are then assigned to
dedicated protection domains. Specifically, using the system
calls introduced in § V-D, we assign the memory pages to a
protection domain that grants read-write access to the sensitive
data, to which remaining domains do not have any access. We
further adjust authorized parts of the applications to enter the
domain just before reading or writing the isolated data—any
other access from outside the protection domain crashes the
application. In the following, we summarize the slight changes
we made to the four applications for protecting sensitive data.
OpenSSL (Nginx): OpenSSL manages prime numbers in
memory via the BIGNUM data structure [84]. We add macros
that allocate these structures into a separate protection domain.
Instrumenting a widely-used library like OpenSSL enables the
protection of a wide range of applications. In our case, the
instrumented OpenSSL library, in combination with the Nginx
web server, in HTTPS mode, offers protection against memory
disclosure attacks, such as Heartbleed [5].
ssh-agent: To avoid repeatedly entering passphrases for
encrypted private keys, users can use ssh-agent to keep
private keys in memory, and use them for authentication when
needed. This makes ssh-agent a target of memory disclo-
sure attacks, aiming to steal the stored private keys. To prevent
this, we modify the functions sshbuf_get_(c)string to
safely store unencrypted keys in dedicated protection domains.
mbed TLS: The mbed TLS library manages prime num-
bers and coefficients of type mbedtls_mpi in the
mbedtls_rsa_context [85]. We define the new data
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structure secure_mbedtls_mpi and use it for the fields
D, P, Q, DP, DQ, and QP in the mbedtls_rsa_context.
We further adjust the secure_mbedtls_mpi initialization
wrapper to fortify the prime numbers in an exclusive domain.
libsodium (minisign): The minimalistic and flexible
libsodium library provides basic cryptographic services.
By only adjusting the library’s allocation functionality in
sodium_malloc [86], we enable tools such as minisign
to safely store sensitive information in protection domains.

VII. EVALUATION

A. System Setup

Our setup consists of an unprivileged domain DomU running
the Linux kernel v4.18, atop the Xen hypervisor v4.12. In
addition, we adjusted the Xen altp2m subsystem, so as to
be used from inside guest VMs, as described in § V. The
host is equipped with an 8-core 3.6GHz Intel Skylake Core
i7-7700 CPU, and 2GB of RAM available to DomU. Although
we have hardened the unprivileged domain DomU, the setup
is not specific to unprivileged domains and can be equally
applied to privileged domains, such as Dom0.

B. Performance Evaluation

Performance is a critical aspect of modern OSes. New
exploit mitigation technologies are unlikely to be employed in
practice if they incur a significant run-time overhead [1]. To
evaluate the performance impact of xMP, we have conducted
two rounds of experiments, focusing on the overhead incurred
by protecting sensitive data in kernel and user space. All
reported results are means over three runs.

1) Kernel Memory Isolation: We measured the perfor-
mance impact of xMP when applied to fortify the kernel’s
page tables (PT) and process credentials (Cred) (§ VI-A
and § VI-B). We used a set of micro (LMbench v3.0) and
macro (Phoronix v8.6.0) benchmarks to stress different system
components, and measured the overhead of protecting (i) each
data structure individually, and (ii) both data structures at the
same time (which requires two disjoint protection domains).

Table I shows the LMbench micro-benchmarks results,
focusing on latency and bandwidth overhead. This allows us
to get some insight on the performance cost at the system
software level. Overall, the overhead is quite low in most
cases for both protected page tables and process credentials.
When protecting page tables, we notice that the performance
impact is directly related to functionality that requires explicit
access to page tables, with outliers related to page faults and
process creation (fork()). In contrast to page tables, we
observe that although the kernel needs to access the struct
cred protection domain when creating new processes, the
overhead is insignificant. On the other hand, the protection
domain guarding process credentials is heavily used during
file operations, which require access to struct cred for
access control. The performance impact of the two protection
domains behaves additively in the combined setup (PT+Cred).

To investigate the cause of the performance drop for the out-
liers (UNIX socket I/O, fstat(), and read()/write()),

Table I
PERFORMANCE OVERHEAD (OHD) OF PROTECTION DOMAINS FOR page
tables, process credentials, AND BOTH MEASURED BY LMBENCH V3.0.

Benchmark PT Cred PT+Cred

L
at

en
cy

syscall() 0.42 % 0.64 % 0.64 %
open()/close() 1.52 % 75.74 % 78.93 %
read()/write() 0.52 % 150.84 % 149.27 %
select() (10 fds) 2.94 % 3.83 % 3.83 %
select() (100 fds) 0.01 % 0.31 % 0.30 %
stat() -1.22 % 52.10 % 53.33 %
fstat() 0.00 % 107.69 % 107.69 %
fork()+execve() 250.04 % 9.36 % 259.59 %
fork()+exit() 461.20 % 7.78 % 437.31 %
fork()+/bin/sh 236.75 % 8.49 % 240.64 %
sigaction() 10.00 % 3.30 % 10.00 %
Signal delivery 0.00 % 2.12 % 2.12 %
Protection fault 1.33 % -4.53 % -1.15 %
Page fault 216.21 % -2.58 % 216.56 %
Pipe I/O 17.50 % 32.87 % 73.47 %
UNIX socket I/O 1.16 % 1.45 % 2.25 %
TCP socket I/O 10.23 % 20.71 % 37.13 %
UDP socket I/O 13.42 % 21.98 % 41.48 %

B
an

dw
id

th

Pipe I/O 7.39 % 7.09 % 17.49 %
UNIX socket I/O 0.10 % 6.61 % 13.40 %
TCP socket I/O 6.89 % 5.83 % 14.53 %
mmap() I/O 1.22 % -0.53 % 0.83 %
File I/O 0.00 % 2.78 % 2.78 %

we used the eBPF tracing tools [87]. We applied the
funccount and funclatency tools while executing the
outlier test cases to determine the hotspots causing the per-
formance drop by extracting the exact number and latency
of kernel function invocations. We confirmed that, in contrast
to benchmarks with a smaller overhead, the outliers call the
instrumented LSM hooks [81] more frequently. In particu-
lar, the function apparmor_file_permission [83] is
invoked by every file-related system call. (This function is
related to AppArmor, which is enabled in our DomU kernel.)
In this function, even before verifying file permissions, we
validate the context-bound integrity of a given pointer to the
process’ credentials. Although this check is not limited to this
particular function, it is performed by every system call in
those benchmarks and dominates the number of calls to all
other fortified kernel functions. For every pointer authentica-
tion, this function triggers the protection domain to access
the secret key required to authenticate the respective pointer.
To measure the time required for this recurring sequence, we
used the funclatency (eBPF) tool. The added overhead of
this sequence ranges between 0.5–1 µsec. An additional 0.5–
4 µsec is required for entering the active protection domain
on every context switch—including switches between user and
kernel space on system calls. Consequently, the context-bound
integrity checks affect the performance of light-weight system
calls, e.g., read() or write(), in a more evident way
than system calls with higher execution times or even without
any file access checks. Having identified the exact locations
responsible for the performance overhead, we can focus on
optimizing performance as part of our future work.

Table II presents the results for the set of Phoronix macro-
benchmarks used by the Linux kernel developers to track
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Table II
PERFORMANCE OVERHEAD (OHD) OF PROTECTION DOMAINS FOR page
tables, process credentials, AND BOTH MEASURED BY PHORONIX V8.6.0.

Benchmark PT Cred PT+Cred

St
re

ss
Te

st
s

AIO-Stress 0.15 % 5.87 % 5.99 %
Dbench 0.43 % 4.74 % 3.45 %
IOzone (R) -4.64 % 26.9 % 24.2 %
IOzone (W) 0.82 % 4.43 % 7.71 %
PostMark 0.00 % 7.52 % 7.52 %
Thr. I/O (Rand. R) 2.92 % 7.58 % 10.13 %
Thr. I/O (Rand. W) -5.35 % 3.01 % -1.29 %
Thr. I/O (R) -1.06 % 19.54 % 20.08 %
Thr. I/O (W) 1.34 % -1.61 % -0.27 %

A
pp

lic
at

io
ns

Apache 6.59 % 9.33 % 11.14 %
FFmpeg 0.14 % 0.43 % 0.00 %
GnuPG -0.66 % -1.31 % -2.13 %
Kernel build 11.54 % 1.84 % 12.71 %
Kernel extract 2.89 % 3.65 % 5.91 %
OpenSSL -0.33 % -0.66 % 0.99 %
PostgreSQL 4.12 % 0.32 % 4.43 %
SQLite 1.10 % -0.93 % -0.57 %
7-Zip -0.30 % 0.26 % 0.08 %

performance regressions. The respective benchmarks are split
into stress tests, targeting one specific system component, and
real-world applications. Overall, with only a few exceptions,
the results show that xMP incurs low performance overhead,
especially for page table protection. Specifically, we observe
a striking difference between the read (R) and write (W)
Threaded I/O tests: while the pwrite() system call is hardly
affected by xMP, there is a noticeable performance drop
for pread(). Using the eBPF tracing tools, we found that
the reason for this difference is that the default benchmark
settings synchronize pwrite() operations. By passing the
O_SYNC flag to the open() system call, pwrite() re-
turns only after the data has been written to memory. Thus,
compared to pread(), which completes after 1–2 µsec,
pwrite() requires 2–8 msec, and the added overhead of
apparmor_file_permission accumulates and does not
affect pwrite() as much as it affects pread().

2) In-Process Memory Isolation: We measured the over-
head of xMP when applied to Nginx using the fortified
OpenSSL library, and a server based on mbed TLS (§ VI-C).
In both cases, we used the server benchmarking tool ab [88]
to simulate 20 clients, each sending 500 and 1,000 requests.
To compare our results with related work, we run the Nginx
benchmarks with the same configuration used by SeCage [28].
As shown in Figure 5, the throughput and latency overhead is
negligible in most cases. Contrary to SeCage, which incurs up
to 40% overhead for connections without KeepAlive headers
and additional TLS establishment, xMP does not suffer from
similar issues in such challenging configurations, even with
small files. The average overhead for both latency and through-
put is 0.5%. For mbed TLS, we used the ssl_server
example [89] to execute an SSL server hosting a 50-byte file.
(Note that we explicitly chose a small file so as not to mask
the overhead with I/O.) Our results show an average overhead
of 0.42% for latency and 1.14% for throughput.
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Figure 5. Latency and throughput overhead of Nginx using protected OpenSSL
with varying file sizes and connections ([File Size (KB)]-[Req #]).

C. Security Evaluation

We evaluated the security of our memory protection primi-
tives using real-world exploits against (i) page tables, (ii) pro-
cess credentials, and (iii) sensitive data in user space. Despite
a strong attacker with arbitrary read and write primitives to
kernel and user memory, by meeting the requirements ¶-¸,
our system blocks illegal accesses to sensitive data.

1) Attacking the Kernel: We assume an attacker who aims
to elevate their privilege using an arbitrary read and write
primitive in kernel memory. To evaluate this scenario, we
used a combination of real-world exploits that achieve the
aforementioned capability. We first reconstructed an exploit to
bypass KASLR [78]. The task_struct of the first process
(init_task) has a fixed offset to the kernel’s base address
and is linked to all processes on the system. This provided
us with the ability to locate sensitive management information
about individual processes, including the root of the page table
hierarchy and process credentials. We then abused CVE-2017-
16995 (i.e., a sign-extension vulnerability in BPF) to gain an
arbitrary read-write primitive to kernel memory.

In the next step, we implemented two different attacks that
target (i) the page tables or (ii) the credentials of a given
process, respectively. In the first attack, we used the write
primitive to modify individual page table entries of the target
process. This allowed us to grant the write permission to
(an otherwise execute-only mapped) kernel code page with
a rarely used system call handler, which is overwritten with
shellcode that disables SMEP and SMAP in the CR4 register.
This lends the attacker the power to inject arbitrary code and
data into kernel memory. In the second attack, we exchanged
the cred pointer in the malicious process’ task_struct
with a pointer to an existing struct cred instance with
higher privileges. In both attacks, we were able to elevate the
privileges of the malicious process. By applying xMP to fortify
page tables and process credentials (§ VI-A and VI-B), we
were able to successfully block both attack scenarios.

To systematically evaluate xMP, we have to consider attacks
that can be equally applied to all kernel structures. Therefore,
disregarding which data structure is under attack, we general-
ize the attack vectors against sensitive kernel structures in the
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following strategies. Under our threat model, attackers can:
• directly modify entries in the data structure of interest;
• redirect a pointer to the targeted data structure to an

injected, attacker-controlled instance;
• redirect a pointer to the targeted data structure to an

existing instance with higher privileges.
xMP withstands modification attempts of the protected data

structures (¶-·), as only authorized kernel code can enter the
associated protection domains. For instance, when protecting
page tables, without first hijacking the kernel’s execution, the
attacker reaches an impasse on how to modify page tables
isolated in protection domains. The injection of code is thus
prevented in the first place.

Alternatively, the attacker can modify a thread’s pointer to
a sensitive data structure. In this case, the modified value must
comply with the added context-bound integrity (¸) that is
enforced on every context-switch or right before accessing the
sensitive data structure (§ IV-C). Since attackers do not know
the secret key, they cannot compute an HMAC that would
validate the pointer’s integrity. Consequently, attackers cannot
redirect the pointer to an injected data structure.

To sidestep the secret key, the attacker can overwrite
the pointer with an existing pointer value—holding a valid
HMAC—to an instance of the data structure with higher
privileges. Yet, as pointers to fortified data structures are bound
to the thread’s context (¸), the attacker cannot redirect pointers
to instances belonging to other threads. The only remaining
option to bypass context-bound pointer integrity is this to find
an HMAC collision. Note that this step must be reversed when
targeting page tables, i.e., the attacker must overwrite the pgd
pointer of a privileged thread with the pointer to the address
space of an attacker-controlled thread.

2) Attacking User Applications: User applications offer a
broad range of different attack scenarios related to sensi-
tive data modification or leakage. We have chosen Heart-
bleed [5] as a representative data leakage attack due to
its high impact. Due to the lack of bounds check of the
attacker-controlled payload_length field of OpenSSL’s
HeartbeatMessage, the attacker can reveal up to 64KB
of linear memory that may hold private keys, passwords, and
other sensitive information, without altering the application’s
legitimate control flow.

By equipping the vulnerable OpenSSL library with the
ability to guard secret key material (§ VI-C), we prevented
the sensitive regions from leaking. Illegal accesses induced an
EPT violation that trapped into the #VE handler, in which we
reported the illegal access and terminated the application.

3) Attacking Protection Primitives: Although our user
space API does not use the VMFUNC instruction but instead
relies on a new system call (§ V-D), given that VMFUNC
is an unprivileged instruction, an attacker can still use it
in an attempt to enter different protection domains. Even if
an attacker introduces a VMFUNC instruction in the applica-
tion’s memory to mount a VMFUNC faking attack [28], the
next context switch would restore the protection domain’s
state from pdomain_index_[kernel|user], making

the kernel immune to illegal protection domain switches
from user space. The attacker can attempt to use a write
primitive to modify the kernel’s protection domain state in
pdomain_index_[kernel|user], forcing the kernel to
enter a privileged domain and grant access to sensitive data
on the next context switch. However, as we bind the integrity
of the active protection domain state to the associated thread’s
context, any attempt to tamper with it will crash the process.

On the other hand, a VMFUNC faking attack would allow
a user-space application to create a small time window, in
which the attacker could successfully switch the currently
active protection domain in user space; the protection domain
will be restored on the next context switch. Further, mediating
the execution of VMFUNC instructions through the dedicated
sys_pdomain_enter system call introduces gadgets that
allow switching to protection domains previously allocated
by the application. Nevertheless, to perform such attacks, the
attacker will need to change the application’s control flow,
which will be detected by orthogonal CFI defenses (§ III).

VIII. DISCUSSION

In this section we discuss the limitations of our xMP im-
plementation and review extensions and alternative scenarios.

A. Limitations
The Linux callback-free RCU feature [90] relocates the

processing of RCU callbacks out of the software interrupt
context into a dedicated thread (§ V-C3). This allows RCU
callbacks to enter protection domains without affecting other
threads’ protection domain state. Yet, RCU callbacks reside in
a linked list of rcu_head instances that are embedded in the
(protected) data structures. As such, the RCU subsystem tries
to access the rcu_head instance in protected memory, e.g.,
every time another deferred callback is about to be linked to
it. To avoid this, we disable RCU callbacks for data structures
to be protected. Alternatively, we could adjust data structures
to be protected so that the corresponding rcu_head fields
are not embedded into targeted data structures.

Besides, in our implementation, we manually instruct the
kernel when to enter a specific protection domain. We can
automate this step by providing a compiler pass. We could
instruct the compiler to bind annotated data structures to
protection domains. Further, the compiler could instrument
calls that enter and leave the protection domain immediately
before and after accessing the annotated data structure.

Also, the current implementation does not foresee nested
protection domains. In fact, we prohibit entering protection
domains, without first closing the active domain; by nesting
protection domains, the state of the previously opened domain
will be overwritten. To address this limitation, the kernel needs
to keep track of the previously opened protection domains by
maintaining a stack of protection domain states per thread.

B. Intel Sub-Page Write Permission
Intel announced the Sub-Page Write-Permission (SPP) fea-

ture for EPTs [36] to enforce memory write protection on sub-
page granularity. Specifically, with SPP, Intel extends the EPT
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by an additional set of SPP tables that determine whether a
128-byte sub-page can be accessed; selected 4KB guest page
frames with restricted write permissions in the EPT can be
configured to subsequently walk the SPP table to determine
whether or not the accessed 128 byte block can be written.

Once this feature is implemented in hardware, it will enrich
xMP in terms of performance and complexity. Let us consider
the use case of protecting process credentials. Once initialized,
the credentials themselves become immutable. However, meta
information, such as reference counters, must be updated
throughout the lifetime of the struct cred instance. As
such, the system has to first enter the protection domain to
relax permissions to otherwise read-only credentials, before
it can update the maintenance information. By means of Intel
SPP, we can arrange the struct cred data structure in such
a way that all meta information is placed into writable sub-
pages, despite the memory access restrictions of the protection
domain. Also, as discussed above, we have solved the RCU
related limitation by deactivating RCU callbacks for protected
in-kernel data-structures. With Intel SPP, we will be able to
place such pointers to writable sub-pages, without the need
for deactivating callbacks for the protected data structure.

C. Execute-Only Memory

Similarly to the lack of non-readable memory (§ II-A), the
x86 MMU does not support execute-only memory either; every
code page has to be executable and readable. This forced
adversaries to come-up with advanced attacks targeting the
control flow. For instance, Just-In-Time ROP (JIT-ROP) [39]
enables code-reuse attacks, despite the existence of fine-
grained ASLR. By reading code pages, an attacker can harvest
code-reuse gadgets, on-the-fly, to construct a suitable payload.
As a response, defenders [11], [38], [42], [91] enforce execute-
only memory to obstruct such attacks. Likewise, by defining
execute-only protection domains to hold code pages, xMP can
counter JIT-ROP similarly to Readactor [18].

IX. RELATED WORK

While the possibility of non-control data, or data-oriented,
attacks has been identified before [3], Chen et al. [4] were
the first to demonstrate the viability of data-oriented attacks
in real-world scenarios, ultimately rendering them as realistic
threats. With FLOWSTITCH [40], Hu et al. introduced a
tool that is capable of chaining, or rather stitching together,
different data-flows to generate data-oriented attacks on Linux
and Windows binaries, despite fine-grained CFI, DEP, and,
in some cases, ASLR, in place. Hu et al. [7] further show
that data-oriented attacks are in fact Turing-complete. They
introduce Data-Oriented Programming (DOP), a technique for
systematically generating data-oriented exploits for arbitrary
x86-based programs. Similarly, Carlini et al. [6] achieve
Turing-complete computation by using a technique they refer
to as Control-Flow Bending (CFB). In contrast to DOP, CFB is
a hybrid approach that also permits the modification of code
pointers. Still, CFB bypasses common CFI mechanisms, by
limiting code pointer modifications in a way that the modified

control-flows comply with CFI policies. Ispoglou et al. [9] ex-
tend the concept of DOP by introducing a new technique they
coin as Block-Oriented Programming (BOP). Their framework
automatically locates dispatching basic blocks, in binaries that
facilitate the chaining of block-oriented gadgets. Specifically,
they present a BOP compiler that translates exploits, written
in a high-level language, to block-oriented gadgets, which are
then chained together to mount a successful attack.

On the other hand, researchers have started to respond to
data-oriented attacks. For instance, DataShield [92] associates
annotated data types with security sensitive information. Based
on these annotations, DataShield partitions the application’s
memory into two disjoint regions. Further, DataShield inserts
bounds checks that prevent illegal data-flows between the sen-
sitive and non-sensitive memory regions. Similar to our work,
solutions based on virtualization maintain sensitive informa-
tion in disjoint memory views [28], [29], [93]. While Mem-
Sentry [29] isolates sensitive data, SeCage [28] additionally
identifies and places sensitive code into a secret compartment.
Both frameworks leverage Intel’s EPTP switching to switch
between the secure compartment and the remaining application
code. Yet, in contrast to our work, MemSentry and SeCage
are limited to user space. Also, SeCage adds complexity by
duplicating and modifying code that would normally be shared
between the secret and non-secret compartments. EPTI [93]
implements an alternative to KPTI by using memory isola-
tion techniques similar to xMP. PrivWatcher [30] leverages
virtualization to ensure the integrity of process credentials.
Contrary to our solution, PrivWatcher creates shadow copies
of struct cred instances, and maintains them in a write-
protected region. Lastly, PT-Rand [78] protects page tables
without employing virtualization. Instead, the authors avoid
potential modifications of paging structures by randomizing
their location. Finally, with PARTS [69], Liljestrand et al.
introduce a compiler instrumentation framework to cope with
pointer-reuse attacks by leveraging the (recently-introduced)
ARMv8.3-A pointer authentication features.

X. CONCLUSION

In this paper, we proposed novel techniques against data-
oriented attacks. Specifically, we leveraged Intel’s virtualiza-
tion extensions to set the ground for xMP primitives that
facilitate the protection of sensitive data structures in kernel
and user space. These primitives extend the Linux memory
management capabilities to empower software developers with
the ability to shift sensitive data structures into disjoint and
isolated protection domains, despite limitations of the x86
MMU. We further equip pointers to memory inside protection
domains with authentication codes to thwart illegal pointer
redirection. We applied xMP to fortify the Linux kernel page
tables and process credentials, as well as sensitive data in
user space. The protection domains withstood various attacks,
despite a strong attacker. In conclusion, we believe that our
primitives introduce a powerful means that brings us one step
closer towards winning the fight against data-oriented attacks.
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