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Abstract. Machine learning methods are now widely used to detect a
wide range of cyber attacks. However, they come with challenges of their
own - one of those problems lies in network dataset characteristics: it
should be well-balanced in terms of percentage of malicious data vs. nor-
mal not-attacked / benign traffic to achieve adequate results. Since usu-
ally in network traffic data there are significantly fewer malicious samples
than benign samples, in this work we address the problem of learning
from imbalanced network traffic data in the cybersecurity domain.

Keywords: Data imbalance · Machine Learning · Classifiers · Cyberse-
curity

1 Introduction

The importance of cybersecurity rises with every passing year, along with the
the number of connected individuals and the growing number of devices utilising
the Internet for various purposes [1] [2]. The antagonistic forces, be it hackers,
crackers, state-sponsored cyberforces or a range of other malicious actors employ
a variety of methods to cause harm to common users and critical infrastructure
alike [3][4]. The massive loads of data transmitted every single second exceeded
the human capacity to deal with them long time ago. Thus, a myriad of machine
learning (ML) methods were successfully implemented in the domain [5] [6] [7].
As rewarding as they are, AI-related approaches come with their own set of
problems. One of them is the susceptibility to data imbalance.

The data imbalance problem refers to a situation in which one or multiple
classes have significantly more learning samples as compared to the remaining
classes. This often results in misclassification of the minority samples by a sub-
stantial number of classifiers, a predicament especially pronounced if the minor-
ity classes are the ones that bear the greatest importance - like malignant cancer
samples, fraud events, or, as in the case of this work, network intrusions. Addi-
tionally, the deterioration of a given model might go unnoticed if the method is
only evaluated on the basis of accuracy.

With the significance of the above-mentioned difficulty in plenty of high-stake
practical settings, various methods to counter that issue have been proposed.
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These fall roughly into three categories: undersampling, oversampling and cost-
sensitive methods. In this work numerous approaches to dataset balancing are
examined, the influence each method has on a number of ML classifiers is high-
lighted and in conclusion the best experimentally found approach in the case of
network intrusion detection is chosen.

The major contribution and the unique value presented in this work comes in
the form of highlighting the notion that the impact dataset balancing methods
have on the behaviour of ML classifiers is not always a straightforward and
intuitive one. A number of balancing approaches is thoroughly evaluated and
their impact on both the dataset and the behaviour of classifiers is showcased.
All of this in the context of a practical, vital domain that is network intrusion
detection.

The paper is structured as follows: in Section 2 the pipeline of network in-
trusion detection is illustrated and described, and the ML algorithms utilised
are succinctly introduced, in Section 3 the chosen balancing methods are char-
acterised. Section 4 expresses the experiments undertaken and finally Section 5
showcases the obtained results.

Table 1: Encoded labels and number of instances in Intrusion Detection Evaluation
Dataset used in this work (see Section 4)

No of training instances Class Label Encoded label

1459377 BENIGN 0
207112 DoS Hulk 4
142924 PortScan 9
115222 DDoS 2

9264 DoS GoldenEye 3
7141 FTP-Patator 7
5307 SSH-Patator 10
5216 DoS slowloris 6
4949 DoS Slowhttptest 5
2713 Web Attack Brute Force 11
1760 Bot 1
1174 Web Attack XSS 13

38 Web Attack SQL Injection 12
10 Heartbleed 8

2 Machine Learning Approach Enhanced with Data
Balancer

The focus of this research lies on the impact the balance of the instance numbers
among classes in a dataset has on the performance of ML-based classification
methods. In general, the step-by-step process of ML-based Intrusion Detection
System (IDS) can be succinctly summarised as follows: a batch of annotated data
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is used to train a classifier. The algorithm ’fits’ to the training data, creating a
model. This is followed by testing the performance of the acquired model on the
testing set - a batch of unforeseen data. In order to alleviate the data balancing
problem present in the utilised IDS dataset an additional step is undertaken
before the algorithm is trained (as seen in Fig. 1).

Fig. 1: IDS training pipeline with dataset balancing

The ML-based classifier block of Fig. 1 can be realised by an abundance of
different machine learning methods. In fact, recent research showcases numerous
novel approaches including deep learning [8][7], ensemble learning [9][10], vari-
ous augmentations to classical ML algorithms [11] etc. In this work three basic
models were chosen to put emphasis on the data balancing part. These are:

– Artificial Neural Network [12][13]
– Random Forest [14]
– Naive Bayes [15]

These represent three significantly different approaches to machine learning and
were selected to cover possibly the widest range of effects dataset balancing could
have on the effectiveness of ML.

3 Balancing Methods

In the cases suffering from the data imbalance problem the number of training
samples belonging to some classes is larger in contrast to other classes.

The conundrum of data imbalance has recently been deeply studied in the
area of machine learning and data mining. In numerous cases, this predicament
impacts the machine learning algorithms and in result deteriorates the effective-
ness of the classifier [16]. Typically in such cases, classifiers will achieve higher
predictive accuracy over the majority class, but poorer predictive accuracy over
the minority class. In general, solutions to this problem can be categorised as (i)
data-related, and (ii) algorithm-related.

In the following paragraphs, these two categories of balancing methods will be
briefly introduced. The focus of the analysis was on the practical cybersecurity-
related application that faces the data imbalance problem.
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Original Distribution After SMOTE

Fig. 2: Class distribution in CICIDS 2017 - Original unbalanced distribution and after
SMOTE

BENIGN class randomly subsampled NearMiss

Fig. 3: Class distribution in CICIDS 2017 - After performing random undersampling
and NearMiss

3.1 Data-related Balancing Methods

Two techniques, belonging to this category, that are commonly used to cope
with imbalanced data use the principle of acquiring a new dataset out of the
existing one. This is realised with data sampling approaches. There are two
widely recognised approaches called data over-sampling and under-sampling.

Under-sampling balances the dataset by decreasing the size of the majority
class. This method is adopted when the number of elements belonging to the
majority class is rather high. In that way, one can keep all the samples belonging
to the minority class and randomly (or not) select the same number of elements
representing the majority class. In our experiments we tried a number of un-
dersampling approaches, one of those was Random Sub-sampling. The effect
random subsampling has on the dataset is illustrated in Fig. 3. The results the
method has in conjunction with the selected ML algorithms is showcased in Tab.
3
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Table 2: CICIDS2017 (full set) / Unbalanced

ANN RandomForest NaiveBayes
ACC: 0.9833 ACC: 0.9987 ACC: 0.2905

precision recall f1-score precision recall f1-score precision recall f1-score support

0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.10 0.18 162154
1 0.97 0.35 0.52 0.88 0.68 0.77 0.01 0.65 0.01 196
2 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.94 12803
3 0.99 0.97 0.98 1.00 0.99 1.00 0.09 0.93 0.16 1029
4 0.95 0.94 0.94 1.00 1.00 1.00 0.74 0.70 0.72 23012
5 0.89 0.98 0.93 0.96 0.98 0.97 0.00 0.67 0.01 550
6 0.99 0.98 0.99 1.00 0.99 0.99 0.05 0.52 0.09 580
7 0.99 0.98 0.99 1.00 1.00 1.00 0.10 0.99 0.18 794
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 15880

10 1.00 0.49 0.66 1.00 1.00 1.00 0.08 0.99 0.15 590
11 0.85 0.10 0.17 0.86 0.99 0.92 0.00 0.07 0.00 301
12 0.00 0.00 0.00 1.00 1.00 1.00 0.01 1.00 0.02 4
13 1.00 0.02 0.05 0.95 0.61 0.74 0.08 0.93 0.14 130

macro avg 0.90 0.70 0.73 0.97 0.95 0.96 0.36 0.75 0.33 218024
weighted avg 0.98 0.98 0.98 1.00 1.00 1.00 0.95 0.29 0.34 218024

Table 3: CICIDS2017 (full set) / Random Subsampling

ANN RandomForest NaiveBayes
ACC: 0.9812 ACC: 0.9980 ACC: 0.2911

precision recall f1-score precision recall f1-score precision recall f1-score support

0 1.00 0.98 0.99 1.00 1.00 1.00 1.00 0.10 0.18 162154
1 0.50 0.63 0.56 0.91 0.92 0.91 0.01 0.65 0.01 196
2 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.94 12803
3 0.98 0.98 0.98 1.00 1.00 1.00 0.09 0.93 0.16 1029
4 0.90 0.99 0.95 1.00 1.00 1.00 0.74 0.70 0.72 23012
5 0.90 0.99 0.94 0.98 0.99 0.99 0.00 0.67 0.01 550
6 0.97 0.98 0.97 0.99 0.99 0.99 0.05 0.52 0.09 580
7 0.99 0.98 0.98 1.00 1.00 1.00 0.10 0.99 0.19 794
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 15880

10 0.97 0.49 0.65 1.00 0.99 1.00 0.08 0.99 0.15 590
11 0.59 0.23 0.33 0.80 0.97 0.88 0.00 0.07 0.00 301
12 0.00 0.00 0.00 1.00 0.80 0.89 0.01 1.00 0.02 4
13 0.80 0.03 0.06 0.96 0.40 0.57 0.08 0.93 0.15 130

macro avg 0.83 0.73 0.74 0.97 0.93 0.94 0.36 0.75 0.33 218024
weighted avg 0.99 0.98 0.98 1.00 1.00 1.00 0.95 0.29 0.34 218024
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After cleaning the Tomek-links Cluster-Centers undersampling

Fig. 4: Class distribution in CICIDS 2017 - After cleaning the Tomek-Links and per-
forming ClusterCenters undersampling

There are also approaches that introduce some heuristics to the process of
sampling selection. The algroithm called NearMiss [17] is one of them. This ap-
proach engages algorithm for nearest neighbours analysis (e.g. k-nearest neigh-
bour) in order to select the dataset instances to be under-sampled. The NearMiss
algorithm chooses these samples for which the average distance to the closest
samples of the opposite class is the smallest. The effect the algorithm has on the
dataset is illustrated in Fig. 3, the results obtained are found in Tab. 4

Another example of algorithms falling into the undersampling category is
called TomekLinks [18]. The method performs under-sampling by removing
Tomek’s links. Tomek’s link exists if the two samples are the nearest neighbours
of each other. More precisely, A Tomek’s link between two samples of different
class x and y is defined as d(x, y) < d(x, z) and d(x, y) < d(y, z) for any sample
z. The effect removing Tomek-links has on the dataset is illustrated in Fig.4, the
effect it has on ML models is found in Tab.5.

A different approach to under-sampling involves centroids obtained from a
clustering method. In that type of algorithms the samples belonging to major-
ity class are first clustered (e.g. using k-means algorithm) and replaced with
the cluster centorids. In the experiments this approach is indicated as Cluster
Centroids. The results of the clustering procedure are illustrated in Fig. 4 and
in Tab. 6

On the other hand, the oversampling method is to be adopted when the size of
the original dataset is relatively small. In that approach, one takes the minority
class and increases its cardinality in order to achieve the balance among classes.
This can be done by using a technique like bootstrapping. In that case, the
minority class is sampled with repetitions. Another solution is to use SMOTE
(Synthetic Minority Over-Sampling Technique)[19]. There are various modifica-
tion to the original SMOTE algorithm. The one evaluated in this paper is named
Borderline SMOTE. In this approach the samples representing the minority
class are first categorised into three groups: danger, safe, and noise. The sample
x is considered to belong to category noise if all nearest-neighbours of x are from
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Table 4: CICIDS2017 (full set) / NearMiss

ANN RandomForest NaiveBayes
ACC: 0.7725 ACC: 0.7116 ACC: 0.3744

precision recall f1-score precision recall f1-score precision recall f1-score support

0 1.00 0.70 0.82 1.00 0.61 0.76 1.00 0.21 0.35 162154
1 0.02 0.71 0.04 0.03 0.81 0.06 0.01 1.00 0.02 196
2 0.90 1.00 0.95 0.52 1.00 0.68 0.91 0.96 0.93 12803
3 0.99 0.97 0.98 0.97 0.99 0.98 0.22 0.93 0.35 1029
4 0.66 1.00 0.80 0.51 1.00 0.68 0.65 0.70 0.68 23012
5 0.58 0.99 0.73 0.57 0.98 0.72 0.00 0.64 0.01 550
6 0.27 0.98 0.43 0.07 0.99 0.13 0.07 0.82 0.13 580
7 0.19 1.00 0.32 0.25 1.00 0.40 0.10 1.00 0.18 794
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
9 0.45 1.00 0.62 0.89 1.00 0.94 1.00 0.99 0.99 15880

10 0.12 0.99 0.21 0.07 1.00 0.13 0.11 0.99 0.20 590
11 0.35 0.56 0.43 0.09 0.99 0.16 0.00 0.08 0.01 301
12 0.00 0.00 0.00 0.05 1.00 0.10 0.01 1.00 0.02 4
13 0.01 0.02 0.02 0.06 0.49 0.11 0.17 0.92 0.29 130

macro avg 0.47 0.78 0.52 0.43 0.92 0.49 0.38 0.80 0.37 218024
weighted avg 0.91 0.77 0.81 0.90 0.71 0.75 0.94 0.37 0.46 218024

Table 5: CICIDS2017 (full set) / Tomek Links

ANN RandomForest NaiveBayes
ACC: 0.9836 ACC: 0.9986 ACC: 0.5263

precision recall f1-score precision recall f1-score precision recall f1-score support

0 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.10 0.18 162154
1 0.92 0.37 0.53 0.81 0.78 0.80 0.01 0.65 0.01 196
2 1.00 1.00 1.00 1.00 1.00 1.00 0.94 0.95 0.94 12803
3 0.99 0.97 0.98 1.00 0.99 0.99 0.09 0.93 0.16 1029
4 0.94 0.95 0.95 1.00 1.00 1.00 0.74 0.70 0.72 23012
5 0.90 0.99 0.94 0.97 0.98 0.98 0.00 0.67 0.01 550
6 0.99 0.98 0.98 0.99 0.99 0.99 0.05 0.52 0.09 580
7 0.99 0.98 0.99 1.00 1.00 1.00 0.10 0.99 0.18 794
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1
9 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 15880

10 1.00 0.49 0.66 1.00 0.99 1.00 0.08 0.99 0.15 590
11 0.85 0.07 0.13 0.84 0.97 0.90 0.00 0.07 0.00 301
12 0.00 0.00 0.00 1.00 0.75 0.86 0.01 1.00 0.02 4
13 1.00 0.02 0.05 0.91 0.55 0.68 0.08 0.93 0.14 130

macro avg 0.90 0.70 0.73 0.97 0.93 0.94 0.36 0.75 0.33 218024
weighted avg 0.98 0.98 0.98 1.00 1.00 1.00 0.95 0.29 0.34 218024
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Table 6: CICIDS2017 (full set) / ClusterCentroids

ANN RandomForest NaiveBayes
ACC: 0.4569 ACC: 0.2560 ACC: 0.2832

precision recall f1-score precision recall f1-score precision recall f1-score support

0 1.00 0.47 0.64 1.00 0.00 0.00 1.00 0.09 0.16 162154
1 0.01 0.28 0.02 0.03 1.00 0.07 0.01 0.65 0.01 196
2 0.90 0.63 0.74 0.74 1.00 0.85 0.93 0.95 0.94 12803
3 0.77 0.68 0.72 0.75 1.00 0.85 0.08 0.93 0.16 1029
4 0.86 0.62 0.72 0.81 1.00 0.90 0.67 0.70 0.69 23012
5 0.15 0.69 0.25 0.82 0.99 0.89 0.00 0.67 0.01 550
6 0.35 0.22 0.27 0.25 0.99 0.40 0.05 0.52 0.09 580
7 0.06 0.47 0.11 0.71 1.00 0.83 0.10 0.99 0.18 794
8 0.01 1.00 0.01 0.50 1.00 0.67 1.00 1.00 1.00 1
9 0.57 0.00 0.00 1.00 1.00 1.00 1.00 0.99 0.99 15880

10 0.00 0.00 0.00 0.10 1.00 0.18 0.08 0.99 0.15 590
11 0.00 0.00 0.00 0.17 0.98 0.29 0.00 0.07 0.00 301
12 0.00 0.00 0.00 0.18 1.00 0.31 0.01 1.00 0.02 4
13 0.00 0.03 0.00 0.05 0.65 0.09 0.09 0.93 0.16 130

macro avg 0.34 0.36 0.25 0.51 0.90 0.52 0.36 0.75 0.33 218024
weighted avg 0.93 0.46 0.60 0.95 0.26 0.23 0.94 0.28 0.32 218024

a different class than the analysed sample, danger when only a half belongs to
different class, and safe when all nearest-neighbours are from the same class.
In Borderline SMOTE algorithm, only the safe data instances are over-sampled
[20]. The effect of this procedure on the dataset is expressed in Fig. 2. The results
are placed in Tab.7

A final note concluding this section would be the observation that there is no
silver bullet putting one sampling method over another. In fact, their application
depends on the use case scenarios and the dataset itself. For the sake of clear
illustration the original dataset’s class distribution is depicted in Fig. 2, the
results the ML algorithms have achieved are found in Tab.1

3.2 Algorithm-related Balancing Methods

Utilizing unsuitable evaluation metrics for the classifier trained with the imbal-
anced data can lead to wrong conclusions about the classifier’s effectiveness. As
the majority of machine learning algorithms do not operate very well with imbal-
anced datasets, the commonly observed scenario would be the classifier totally
ignoring the minority class. This happens because the classifier is not sufficiently
penalized for the misclassification of the data samples belonging to the minority
class. This is why the algorithm-related methods have been introduced as a part
of the modification to the training procedures. One technique is to use other
performance metrics. The alternative evaluation metrics that are suitable for
imbalanced data are:
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Table 7: CICIDS2017 (full set) / BORDERLINE SMOTE

ANN RandomForest NaiveBayes
ACC: 0.9753 ACC: 0.9920 ACC: 0.5263

precision recall f1-score precision recall f1-score precision recall f1-score support

0 1.00 0.97 0.99 1.00 0.99 1.00 1.00 0.52 0.68 162154
1 0.17 0.94 0.29 0.17 0.98 0.30 0.00 0.65 0.01 196
2 0.99 1.00 1.00 1.00 1.00 1.00 0.85 0.95 0.90 12803
3 0.94 0.99 0.96 1.00 1.00 1.00 0.05 0.87 0.10 1029
4 0.93 0.99 0.96 0.99 1.00 1.00 0.68 0.70 0.69 23012
5 0.64 0.96 0.77 0.94 0.98 0.96 0.01 0.20 0.02 550
6 0.78 0.51 0.62 1.00 0.97 0.98 0.01 0.03 0.01 580
7 0.87 0.98 0.92 0.99 1.00 1.00 0.02 0.47 0.05 794
8 0.50 1.00 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1
9 0.99 1.00 0.99 1.00 1.00 1.00 0.01 0.00 0.00 15880

10 0.64 0.53 0.58 1.00 0.89 0.94 0.07 0.50 0.12 590
11 0.20 0.26 0.22 0.85 0.84 0.84 0.02 0.89 0.05 301
12 0.01 0.75 0.01 1.00 1.00 1.00 0.01 1.00 0.03 4
13 0.16 0.77 0.27 0.67 0.90 0.77 0.00 0.00 0.00 130

macro avg 0.63 0.83 0.66 0.90 0.97 0.91 0.27 0.56 0.26 218024
weighted avg 0.98 0.98 0.98 1.00 0.99 0.99 0.87 0.53 0.64 218024

– precission - indicating the percentage of relevant data samples that have
been collected by the classifier

– recall (or sensitivity)- indicating the total percentage of all relevant instances
that have been detected.

– f1-score - computed as the harmonic mean of precision and recall.

Another technique that is successfully used in the field is a cost-sensitive
classification. Recently this learning procedure has been reported to be an ef-
fective solution to class-imbalance in the large-scale settings. Without losing
the generality, let us define the cost-sensitive training process as the following
optimisation formula:

θ̂ = min
θ

{
1

2
||θ||2 +

1

2

N∑
i=1

Ci||ei||2
}

(1)

where θ indicates the classifier parameters, ei the error in the classifier response
for the i-th (out of N) data samples, and Ci the importance of the i-th data
sample.

In cost-sensitive learning, the idea is to give a higher importance Ci to the
minority class, so that the bias towards the majority class is reduced. In other
words, we are producing a cost function that is penalizing the incorrect classi-
fication of the minority class more than incorrect classifications of the majority
class.

In this paper we have focused on Cost-Sensitise Random Forest as an ex-
ample of cost-sensitive meta-learning. This is mainly due to the fact the Random
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Forest classifier in that configuration yields the most promising results. These
can be found in Tab. 10

4 Experiments and Results

4.1 Dataset Description - Intrusion Detection Evaluation Dataset -
CICIDS2017

CICIDS2017 [21] is an effort to create a dependable and recent cybersec dataset.
The Intrusion Detection datasets are notoriously hard to come by, and the ones
available display at least one of frustrationg concerns, like the lack of traffic
diversity, attack variety, insufficient features etc. The authors of CICIDS2017
offer a dataset with realistic benign traffic, created as an interpolation of the
behaviour of 25 users using multiple protocols. The dataset is a labelled capture
of 5 days of work, with 4 days putting the framework under siege by a plethora of
attacks, including malware, DoS attacks, web attacks and others. This work relies
on the captures from Tuesday, Wednesday, Thursday and Friday. CICIDS2017
constitutes one of the newest datasets available to researchers, featuring over 80
network flow characteristics. The Imbalance Ratio of the Majority Class to the
sum of all the numbers of samples of the rest of the classes was calculated to be
2.902. The sample counts for particular classes in the training set are showcased
in Tab. 1

4.2 Results and Perspectives

CICIDS 2017 dataset consists of 13 classes - 12 attacks and 1 benign class. As
depicted in Fig. 2, there is a wide discrepancy among the classes in terms of
the number of instances, especially the benign class as compared to the attack
classes. The number of instances in the respective classes in the training set is
displayed in Tab. 1.

During the tests the initial hypothesis was that balancing the classes would
improve the overall results. Random Subsampling (Tab. 3) along a slew of other
subsampling methods were used to observe the influence dataset balancing has
on the performance of 3 reference ML algorithms - an Artificial Neural Network
(ANN), a RandomForest algorithm and a Naive Bayes classifier. Finally, Bor-
derline SMOTE was conducted as a reference oversampling method. The results
of those tests are to be witnessed in Tab. 4, 7, 5 and 6. It is immediately ap-
parent from inspecting the recall in the unbalanced dataset (Tab. 1) that some
instances of the minority classess are not recognised properly (class 1 and 13).
Balancing the benign class to match the number of samples of all the attacks
combined changed both the precision and the recall achieved by the algorithm.
It also became apparent that none of the subsampling approaches outperformed
simple random subsampling in the case of CICIDS2017. The tests revealed an
interesting connection among the precision, recall and the imbalance ratio of the
dataset. Essentially, there seems to exist a tradeoff between precision and recall
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that can be controlled by the number of the instances of classes in the training
dataset. To evaluate that assertion further tests were conducted. Random Forest
algorithm was trained on the Unbalanced dataset and then all the classess were
subsampled to match the number of samples in one of the minority classes (Tab.
9 - 1174 instances per class and Tab. 8 - 7141 instances per class).

Table 8: CICIDS2017 / Random Subsampling down to 7141 instances per class / Ran-
domForest

precision recall f1-score support

0 1.00 0.98 0.99 162154
1 0.13 0.99 0.23 196
2 1.00 1.00 1.00 12803
3 0.92 1.00 0.96 1029
4 0.98 1.00 0.99 23012
5 0.85 0.99 0.92 550
6 0.93 0.99 0.96 580
7 0.93 1.00 0.96 794
8 0.17 1.00 0.29 1
9 1.00 1.00 1.00 15880

10 0.73 1.00 0.85 590
11 0.63 0.98 0.77 301
12 0.07 1.00 0.14 4
13 0.32 0.48 0.39 130

accuracy 0.9872 218024
macro avg 0.69 0.96 0.74 218024

weighted avg 0.99 0.99 0.99 218024

The tests proved that changing the balance ratio undersampling the majority
classes improves the recall of the minority classes, but degrades the precission of
the classifier on those classes. This basically means that dataset balancing causes
the ML algorithms to misclassify the (previously) majority classes as instances
of the minority classes, thus boosting the false positives.

Finally, a cost-sensitive random forest algorithm was tested. After trying
different weight setups results exceeding any previous undersampling or over-
sampling methods were attained (Tab. 10). It is noteworthy that the achieved
recall for class 13 is higher while still retaining a relatively high precision. A
relationship between class 11 and class 13 was also discovered, where setting a
higher weight for class 13 would result in misclassification of class 11 samples as
class 13 samples and the other way round.

5 Conclusions

In this paper the evaluation of a number of dataset balancing methods for the
ML algorithms in the cybersecurity doman was presented. The conducted ex-
periments revealed a number of interesting details about those methods. Firstly,
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Table 9: CICIDS2017 / Random Subsampling down to 1174 instances per class / Ran-
domForest

precision recall f1-score support

0 1.00 0.96 0.98 162154
1 0.07 1.00 0.13 196
2 0.99 1.00 1.00 12803
3 0.69 1.00 0.82 1029
4 0.94 0.99 0.97 23012
5 0.76 0.99 0.86 550
6 0.86 0.99 0.92 580
7 0.81 1.00 0.89 794
8 0.17 1.00 0.29 1
9 1.00 1.00 1.00 15880

10 0.44 1.00 0.61 590
11 0.23 0.65 0.34 301
12 0.07 1.00 0.13 4
13 0.13 0.95 0.23 130

accuracy 0.9657 218024
macro avg 0.58 0.97 0.65 218024

weighted avg 0.99 0.97 0.97 218024

Table 10: CICIDS2017 / Cost-Sensitive RandomForest

precision recall f1-score support

0 1.00 1.00 1.00 162154
1 0.34 0.91 0.50 196
2 1.00 1.00 1.00 12803
3 1.00 0.99 0.99 1029
4 1.00 1.00 1.00 23012
5 0.97 0.98 0.97 550
6 1.00 0.99 0.99 580
7 1.00 1.00 1.00 794
8 1.00 1.00 1.00 1
9 1.00 1.00 1.00 15880

10 1.00 1.00 1.00 590
11 0.98 0.85 0.91 301
12 1.00 1.00 1.00 4
13 0.72 0.96 0.83 130

accuracy 0.9973 218024
macro avg 0.93 0.98 0.94 218024

weighted avg 1.00 1.00 1.00 218024
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in the case of the CICIDS2017 dataset, random subsampling was just as good or
better than other undersampling methods and the results were on par with Bor-
derline SMOTE. Secondly, the final proportions of the dataset can bear just as
much an impact on the results of ML classification as the choice of the balancing
procedure itself. Thirdly, there is a relationship among the size of the majority
classes, the precision and the recall achieved, which is simply expressed by the
number of majority samples falsely classified as minority samples. Finally, for
CICIDS2017 the best results were achieved by using the cost-sensitive approach
and a random forest algorithm.
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