Dear all,
I would like to inform you that the following SPARTA paper has been published:
Toldinas, Jevgenijus, Algimantas Venčkauskas, Robertas Damaševičius, Šarūnas Grigaliūnas, Nerijus Morkevičius, and Edgaras Baranauskas. 2021. "A Novel Approach for Network Intrusion Detection Using Multistage Deep Learning Image Recognition"
Electronics 10, no. 15: 1854. https://doi.org/10.3390/electronics10151854
All the best,
Algimantas Venčkauskas
______________________________________________________
Abstract
The current rise in hacking and computer network attacks throughout the world has heightened the demand for improved intrusion detection and prevention solutions. The intrusion
detection system (IDS) is critical in identifying abnormalities and assaults on the network, which have grown in size and pervasiveness. The paper proposes a novel approach for network intrusion detection using multistage deep learning image recognition. The
network features are transformed into four-channel (Red, Green, Blue, and Alpha) images. The images then are used for classification to train and test the pre-trained deep learning model ResNet50. The proposed approach is evaluated using two publicly available
benchmark datasets, UNSW-NB15 and BOUN Ddos. On the UNSW-NB15 dataset, the proposed approach achieves 99.8% accuracy in the detection of the generic attack. On the BOUN DDos dataset, the suggested approach achieves 99.7% accuracy in the detection of the DDos
attack and 99.7% accuracy in the detection of the normal traffic..