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Résumé. Les modeles de Machine Learning ont tendance a reproduire et a amplifier
les biais. Certaines techniques, s’appuyant sur la Fairness, permettent de lutter contre
ces biais. La Fairness est 'un des sous-themes du “Trustable Machine Learning”. Un
autre sous-theme est ’explicabilité. En Machine Learning, nous utilisons certaines tech-
niques souvent tres fortement non linéaires. Comprendre le comportement des modeles
est une tache compliquée. Dans cet exposé, nous utilisons un réseau advseraire issu de
la littérature pour limiter l'influence de certains parametres sur un classifieur afin de
respecter les contraintes de Fairness. Nous mesurons le gain en Fairness par rapport a
un classifieur classique avec une métrique nommée la p-rule, avec des métriques basées
sur la distance entre deux distributions et avec la Differential Fairness. Pour avoir une
explication locale de la différence entre le classifieur classique et le classifieur adversaire,
nous calculons les valeurs de Shapley, une technique d’explication classique issue de la
théorie des jeux, dont la définition dépendra d’une population de référence, et non de la
prédiction moyenne comme il est souvent fait. Enfin, nous montrons 'apport du réseau
adversaire en termes de protection des données. Les travaux ont été réalisé dans le cadre
du projet H2020 SPARTA.
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Abstract. Machine Learning models tend to reproduce and amplify biases. Some
techniques, relying on Fairness, allow to fight against these bias. Fairness is one of the
sub-topic of Trustable Machine Learning. Another sub-topic is explainability. In Ma-
chine Learning, we use some techniques often very strongly non-linear and understanding
models behavior is a hard task. In this talk, we will use an adversarial network coming
from literature to limit influence of some parameters on a classifier to achieve Fairness.
We will measure the gain of Fairness compared to a classifier with the base rate metric
named p-rule, with metrics based on the distance between two distributions and with the
Differential Fairness. To have local explanation of the difference between the classical and
the fair classifier, we will compute the Shapley Value, a classical explanation technique
coming from Game Theory, whose definition will depend on a reference population, and
not the average prediction as often seen. Finally, we will show the contribution in terms
of data protection of the fair classifier. This work is funded under the SPARTA H2020
project.
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1 Introduction

1.1 Fairness

Machine Learning models tend to reproduce and amplify biases. These biases can come
from the data: there are known biases such as selection bias when sampling is poor,
historical biases, for example when a population is disadvantaged, etc. There are also
biases that can come from algorithms: some recommendation algorithms lock people in
bubbles instead of offering them new possibilities, when data are unbalanced, etc. There
are several possible definitions of Fairness. First, we can wish that the model outputs
would be similar for two subpopulations. It is to be hoped that the errors in the model
will be similar for the different subpopulations. Finally, we can wish that two similar
individuals except the sub-population to which they belong receive similar treatment.

1.2 Explainability

In Machine Learning (ML), and more generally in artificial intelligence, we mainly focus
on performance. Highly non-linear models such as Random Forests, Gradient Boosting,
Deep Learning, etc. are often used. Generally, performance are satisfactory. However, we
are unable to explain how the model builds its decisions. This can be a problem, especially
when dealing with critical systems. There are several levels of explanation in ML models.
The first level is global: we want to understand the model general behavior and the
features impact on the model’s outputs. At local level, we explain why a prediction was
made for an observation. The explanation position has to be defined. Do we learn a
model that is interpretable by nature, like e.g. additive model ? Do we learn the model to
generate an explanation at the same time as we make a prediction (see e.g. Baratt, 2017)7
Does the explanation require an additional component, independent of the type of model
used (see e.g. Ribeiro et al, 2016)7 Some objectives of explainability are to verify ML
functionality and increase confidence of users. Since these systems are used as decision
support, the task is to design an approach to optimize the relation between performance
boost provided by these systems and explainability of its decisions. This explainability
can be directed to the engineer developing these systems, to improve it, and the final users
of these systems who needs to understand the decisions made, for being more confident
in the results and enriching the by its business knowledge.

2 Fair Adversarial Network

2.1 Fairness measure

In this subsection, we give some classical measure of Fairness on a binary classification
task (see e.g. Friedler et al., 2018, Zafar et al., 2015). Note a binary class prediction



Y e {0,1} and a binary sensitive attribute Z € {0,1}. A base rate metrics measures

the change of models’ outputs according to a sensitive attribute. For instance, p%-rule is
P(Y=1|Z=1) P(Y=1|Z=0) P
P(Y=1|Z=0)’ P(Y=1|Zz=1)) — 100
measure the model’s errors according a sensitive attribute. For instance, the Z-accuracy
is given by P(Y = y|Z = z,Y = y) € [0,1]. The group-conditioned calibration measure
the label repartition knowing model prediction according to an attribute. For instance, Z-
calibration + is given by P(Y = 1|Z = 2,Y = 1) € [0, 1]. Individual-level discrimination
measure how the model handle one individual comparing the most similar individuals.
The consistency is given by 1 — £ 31", > jeknn(y |Yi — Y5| € [0,1], where knn(i) are the
K-Nearest Neighbors of i.

Foulds and Pan (2018) proposes the Differential Fairness which states that a mech-
anism M (z) is e-differentially fair in a framework (A, ©), where A is the ensemble of

attributes to protect, if for all € © with  ~ 6 and y € Range(M),

given by min ( € [0, 1]. Group-conditioned accuracy metrics

exp(—¢) < Prro(M(z) = yls;, 0)

S Pars(M (@) = sy, 0) = P

for all (s;,s;) € A x A, where P(s;|0) > 0, P(s;]6) > 0.

2.2 Adversarial Network

Several techniques have been proposed to achieve Fairness. Some are based on regulariza-
tion methods: the direct and indirect information which rely to the sensitive attribute(s)
are penalized (see e.g. Raff et al., 2017). Some others techniques will use new represen-
tations that hide attribute, e.g. by Deep Learning (see e.g. Louizos et al., 2015). Some
others techniques introduce fairness constraint by modifying the inputs or the outputs of
the algorithms (see e.g. Kamiran et al., 2018).

We consider the adversarial network proposed by Louppe et al., 2017. They use this
architecture in context where they want to introduce independence between the outputs
of a classifier and some nuisance parameters. The overview of the architecture is given by
Figure 1. Our objective will be to use this architecture to make independent the outputs
of a classifier of constituent elements to a sub-population to be protected or to elements
which we wish that they cannot be revealed by the model’s outputs.

Note Y classifier prediction based on input X, Y the true value and A the sensitive
attributes, f.¢ and 0,q parameters of respectively the classifier and the adversarial net-
works, Lossy (0ag) and Loss (O, 0aa) the loss of a pre-trained classifier and adversarial
networks.

During the iteration, the objective function given by Equation (1) is considered:

Ocif, Oaa = arg min max (Lossy (Beig) — AL0SS 4(Oeig, Oaa)) - (1)
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Figure 1: Overview of adversarial network architecture of Louppe et al. (2017)

3 Shapley Value

3.1 Definition

Note v : 2 — R such as v()) = 0 and N a set of players. If S C N, v(S) is the amount of
wealth produced by S when they cooperate. The Shapley Value (see Shapley, 1953) is a
fair share of the global wealth v(NN) produced by all players together, among themselves.

Bi(N,v) = Z (card(N) — c;;;ci((iz)'— 1)leard(S)! (0(SUT) — (S)).
SCN\i

The Shapley value is the only indicator that respects the four following properties:
o Additivity: ®;(N,v+ w) = ®;(N,v) + ®;(N,w) for all 7;
e Null player: if v(SUd) = v(S) for all S C N\i then ®;(N,v) = 0;
e Symmetry: &, ; (7N, mv) = ®;(N,v) for every permutation = on N;
o Efficiency: Y.y ®i(N,v) = v(N).

In Machine Learning, Shapley Value can be expressed according the Equation (2).

o, — Z (card(F) — Cf:il(ip)),_ 1)!card(S)! (fsui(xsui) — fs(xs)), (2)

SCF\i

where fs(xg) = ff(xl, oy 2p)dPges — Ex (f(X)) , I the features set, S a subset of

features such as S C F, v(S) = fs(xs) = E(f(x|xs) = x§, with x§ real value of the
features associate at the instance explained on features subset S.



3.2 Approximation

The exact computation of the Shapley Value involves O(2P) calculations, which is very
quickly untractable to do. Some authors rewrite the Shapley Value problem as a weighted
least square optimization problem (see e.g. Lundberg and Lee, 2017; Aas et al., 2019).

Some authors use Monte Carlo techniques to approximate the Shapley Value (see e.g.
Strumbelj and Kononenko, 2014; Maleki et al., 2014). Maleki et al., 2014 proves the
good performance in terms of errors of Monte Carlo estimation of Shapley Value when
the variance or the range of the players’ marginal contributions is known.

3.3 Adaptation to a reference population

In classical application of Shapley Value, the reference population is the average prediction
and we measure the contribution of each feature to the difference between this prediction
and the prediction made for the instance. Merrick and Taly, 2019 propose a generalization
of this definition. In the game proposed, the amount of wealth produced by S when they
cooperate is written by:

Vg pres (S) = Eroprer (f(2(x, R, 5))) — Erprer (f(R)) ,

where z : (x,R,S) — (21,...,2,) with z; = 2; X Licg +7; X Ligs for alli € (1,...,p), D™/
a sampling distribution (e.g. uniform on the range of the features or a sampling from
features marginal distribution).

4 Application

During this talk, after introducing the fair adversarial network and the Shapley Value,
we will propose an illustration of the use of the Fair Adversarial Network on one use case
which could be on COMPAS dataset, a dataset of justice predictive where it exists some
known bias. We will compare the performance both in term of accuracy and in term of
Fairness. For Fairness evaluation, in addition to the p-rule and the Differential Fairness,
we will propose base rate metric based on the difference between two distributions which
that will solve the threshold problem of the p-rule. Assume we consider a case of binary
classification with ¥ = 1 or 0 where a protected attribute A takes two modality: aq,
the discriminated modality, and as;. We can compute kernel estimator of the densities of
P(Y = 1|A = a1) and P(Y = 1|4 = a,), and then compute the Kullback Leibler (KL)
divergence between the two estimated distributions. We compute the max between of the
two KL divergence when A = a; and A = ay are respectively the reference population.
Another metric consists to compute the Kolmogorov-Smirnov statistic between the two
empirical distributions. Last metric we propose is to compute the Dynamic Time Warping
distance between (pay,...,DPm,)) and (qay,---,qmy)), where for all @ € {1,...,n1}, pw
(resp. for all i € {1,...,m2}, q;)) is the statistic of order ¢ of the probability predicted
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by the classifier for the instance such as A = a; (resp. the probability predicted by the
classifier for the instance such as A = as), with ny (resp. ny) the cardinal of the instances
which have a; modality (resp. as modality). Thanks to the Shapley Value, we will explain
the difference between a classical classifier, which has no Fairness constraint, and the Fair
classifier. Moreover we will illustrate the contribution in terms of data protection made
possible by the Fair Adversarial Network.
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