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Abstract. Recent advances in machine learning (ML) and the surge in
computational power have opened the way to the proliferation of ML and
Articial Intelligence (AI) in many domains and applications. Still, apart
from achieving good accuracy and results, there are many challenges
that need to be discussed in order to effectively apply ML algorithms
in critical applications for the good of societies. The aspects that can
hinder practical and trustful ML and AI are: lack of security of ML
algorithms as well as lack of fairness and explainability. In this paper we
discuss those aspects and provide current state of the art analysis of the
relevant works in the mentioned domains.
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1 Introduction

Recent advances in machine learning (ML) and the surge in computational power
have opened the way to the proliferation of Articial Intelligence (AI) in many
domains and applications.

Still, many of the ML algorithms offered by researchers, scientists and R&D
departments focus only on the the numerical quality of results, high efficiency
and low error rates (such as low false positives or low false negatives). But even
when such goals are met, those solutions cannot (or should not) be realistically
implemented in many domains, especially in critical fields or in the aspects of
life that can impact whole societies, without other crucial criteria and require-
ments, namely: security, explainability and fairness. Moreover, frequently the
outstanding results are achieved on data that is well-prepared, crafted in lab-
oratory conditions, and are only achievable when implemented in laboratory
environments.

However, when large scale applications of AI became reality, the realization
came that the security of machine learning requires immediate attention. Mali-
cious users, called ’Adversaries’ in the AI world, can skilfully inuence the inputs



2 M. Choraś et al.

fed to the AI algorithms in a way that changes the classication or regression
results. Regardless of the ubiquity of machine learning, the awareness of the se-
curity threats and ML’s susceptibility to adversarial attacks is fairly uncommon.

Apart from security, another aspect that requires attention is the explain-
ability of ML and ML-based decision systems. Many researchers and systems
architects are now using deep-learning capabilities to solve detection or pre-
diction tasks. However, in most cases, the results are provided by algorithms
without any justication. Some solutions are offered as black-box magic and the
Truth provider, while for decision-makers in a realistic setting the question why
(the system arrives at certain answers) is crucial and has to be answered.

Therefore, in this paper an overview of aspects and recent works on security,
explainability, and fairness of AI/ML systems is presented, the depiction of those
concerns can be found in Fig. 1. The major contributions of the paper are: current
analysis of challenges in machine learning (other than only having good numeric
results) as well as state of the art analysis of works in secure ML, explainable
ML and fairness.

The paper is structured as follows: in section 2 security of machine learning is
discussed and an overview of recent works is provided. Several types of adversar-
ial attacks are mentioned, such as evasion attacks, data poisoning, exploratory
attacks (an example of deep learning use for exploratory attacks can be found
in [1]) etc. In Section 3 a survey of fairness in ML is presented, while in Section
4 the focus is on related works in explainable machine learning. Conclusions are
given thereafter.

2 Security and Adversarial Machine Learning in
disinformation

Recently it has come to attention that skilfully crafted inputs can affect artificial
intelligence algorithms to sway the classification results in the fashion tailored
to the adversary needs [2]. This new disturbance in the proliferation of Machine
Learning has not yet been extensively researched, and thus the awareness of the
challenge is adequately infrequent. At the time of writing this paper a variety of
vulnerabilities have been uncovered [2].

With the recent spike of interest in the field of securing ML algorithms, a
myriad of different attack and defence methods have been discovered; no truly
safe system has been developed however, and no genuinely field-proven solutions
exist [3].

The solutions known at this point seem to work for certain kinds of attacks,
but do not assure safety against all kinds of adversarial attacks. In certain sit-
uations, implementing those solutions could lead to the deterioration of ML
performance [2].

The adversaries behaviour is affected by the extent of the knowledge the
agent possesses of the target algorithm’s architecture. In literature, this level of
acquaintance is categorized as black box and white box [4].
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Fig. 1. Machine Learning concerns

While white box attacks presuppose full knowledge of the attacked algorithm;
black box strikes are performed with no preceding knowledge of the model [4].

– Targeted Poisoning
– transferable clean-label attack (convex polytope attack)
– Feature Collision Attack
– one-shot kill Attack
– single poison instance attack
– watermarking
– multiple poison instance attack
– Non-Targeted Poisoning

There are a couple of known poisoning attacks featured in the literature. In [5]
a method utilising the intrinsic properties of Support Vector Machines is intro-
duced. The overarching idea is that an adversary can craft a data point that
significantly deteriorates the performance of the classifier. The formulation of
that data point can be, as demonstrated by the authors, defined as the solu-
tion of an optimisation problem with regard to a performance measure. Thus,
gradient ascent is used to identify local maxima of the error surface. The pa-
per introduces a model that analyses label flipping attacks on support vector
machines (SVM) in binary classification, which they call adversarial label noise.
In their paper, the authors evaluate two major attack strategies - random label
flips and adversarial label flips. Random flips are simply accidental noise, which
influences a given percentage of data. The second instance features an adversary
seeking the maximisation of classification error on testing data. The testing data
has not been tampered with. The authors note that the challenge of finding the
worst possible mix of label flips is not a straightforward one. The labels that are
flipped the earliest are the ones that carry non-uniform probabilities according
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to the SVM trained on the clear dataset. The classes chosen for the flips are the
ones classified with a high confidence, this should result in a significant impact
on SVM accuracy[5].

The authors of [6] express in their paper an illustration of how an attacker
could manipulate ML in spam filtering by meddling with the data to either
subject the user to an ad, or stop the user from receiving genuine communication.
The efficiency of those attacks is illustrated.

The authors use an algorithm called SpamBayes for their research. Spam-
Bayes takes the head and body of a message, tokenizes them and scores the
spam to classify it as spam, ham or unsure. With this established, the paper
presents a dictionary attack, in which the algorithm is subjected to an array of
spam e-mails containing a set of words that are likely to be present in genuine
communication. When those are marked as spam, the algorithm will be more
likely to flag legitimate mail as spam. This particular attack comes in two vari-
ations: a procedure where the attack mail simply contains the whole dictionary
of the English language, called the ’basic dictionary attack’ and a more refined
approach, where the attack is performed with the use of a message containing
word distribution more alike the users message distribution, along with the collo-
quialisms, misspellings etc. In this particular case the authors propose a pool of
Usenet newsgroup posts. The other evaluated attack is geared towards blocking
a specific kind of e-mail - a causative targeted availability attack, or a focused
attack. In this scenario the adversary spam the user with messages containing
words that are likely to appear in a specific message. With SpamBayes retrained
on these messages it is then predisposed to filtering a distinct, genuine commu-
nication as spam. This could eliminate a competing bid of a rival company, for
example. Including the name of a rival company in spam e-mails, their products
or the names of their employees could achieve that objective. The authors indi-
cate that using the dictionary attacks can neglect the feasibility of a spam filter
with only 1% of retraining dataset controlled, and a masterfully crafted focused
attack can put a specific message in the spam box 90% of the time.

In [7] a framework for the evaluation of security of feature selection algo-
rithms is proposed. The framework follows the outline defined by [8] in which
the authors evaluate the attacker’s goal, the extent of the adversary’s knowledge
of the workings of the algorithm, and their capability in data manipulation. The
goal of the malicious user is either targeted or indiscriminate, and it aims to in-
fringe on one or more of the well-known infosec triad items: availability, integrity
or privacy. The specific acquaintance of the adversary with the workings of the
system can be one of the following:

– knowledge of the training data (partial or full)
– knowledge of the feature representation (partial or full)
– knowledge of the feature selection algorithm
– Perfect Knowledge (worst case scenario)
– Limited Knowledge

With regard to the attacker’s capability, in the case of causative (poisoning)
attacks, the attacker can usually influence just a subsection of the training set.
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The adversary has to bear in mind that the labeling process varies in different
use cases, with the use of honeypots and anti-virus software giving setting the
constraints of the datapoints that have to be crafted in the malware detection
example.

The authors evaluate the robustness of 3 widely-used feature selection algo-
rithms: Lasso, Ridge Regression and the Elastic Net against poisoning attacks
with regard to the percentage of injected poisoned data points. The results show
that poisoning 20% of the data inflates the classification error 10-fold. In addi-
tion to the influence on classification, the authors notice that even with a minute
amount of poisoning samples the stability index drops to zero. This means that
the attacker can influence feature selection.

In [9] the authors investigate a poisoning attack geared towards targeting
specific test instances with the ability to fool a labelling authority, which they
name ’clean-label’ attacks. Their work does not assume knowledge of the training
data, but does require the knowledge of the model. It is an optimisation-based
attack for both the transfer-learning and end-to-end DNN training cases. The
overall procedure of the attacks, called ’Poison Frogs’ by the authors, is as fol-
lows: the basic version of this attack starts with choosing the target datapoint,
then making alterations to that datapoint to make it seem like it belongs to
the base class. A poison crafted that way is then inserted into the dataset. The
objective is met if the target datapoint is classified as the base class at test time.
Arriving at a poisonous datapoint to be inserted into the training set comes as
a result of a process called ’feature collision’. It is a process that exploits the
nonlinear complexity of the function propagating the input through the second-
to-last layer of the neural network to find a datapoint which ’collides’ with the
target datapoint, but is also close to the base class in the feature space. This
allows the poisoned datapoint to bypass the scrutiny of any labelling authority,
and also remain in the target class distribution. The optimisation is performed
with a forward-backward-splitting iterative procedure.

The [10] paper evaluates a poisoning procedure geared towards poisoning
multi-class gradient-decent based classifiers. To this end the authors utilize the
recently proposed back-gradient optimization. Back-gradient optimization offers
a lighter and more reliable way to arrive at the solution to the optimization
problem of poisoning attacks. Borrowed from energy-based models and hyper-
parameter optimisation, this approach allows for a replacement of one of the
optimisation problems with a set of iterations of updating the parameters.

The authors introduce an attack procedure to poison deep neural networks
taking into consideration the weight updates, rather than training a surrogate
model trained on deep feature representations. They demonstrate the method on
a convolutional neural network (CNN) trained on the well-known MNIST digit
dataset, a task which requires the optimisation of over 450000 parameters. They
find that deep networks seem more resilient to poisoning attacks than regular
ML algorithms, at least in conditions of poisoning under 1% of the data. The
authors also conduct a transferability experiment in which they conclude that
poisons crafted against linear regression (LR) algorithm are ineffective against a
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CNN, and poisons crafted against a CNN have a similar effect on LR as random
label flips. A more comprehensive assessment of the effects of poisoning attacks
crafted against deep neural networks with the use of the back-gradient algorithm
is necessary. [11] investigates poisoning attacks carried out by an attacker with
full knowledge of the algorithm. The assumption is that the adversary aims to
poison the model with the minimum amount of poisoning examples. The at-
tacker function is defined as a bilevel optimisation problem. The authors notice
that this function is similar to machine teaching, where the objective is to have
maximum possible influence over the subject by carefully crafting the training
dataset. The authors point to the mapping of a teacher to the attacker and from
a student to the AI algorithm. The paper thus offers economical solutions to the
bilevel optimisation problem present in both fields. Essentially, the authors sug-
gest that, under certain regulatory conditions, the problem can be reduced with
the use of Karush-Kuhn-Tucker theorem (KKT) to a single-level constrained
optimization problem. Thus, a formal framework for optimal attacks is intro-
duced, which is then applied in 3 different cases - SVM, Linear Regression and
logistic regression. In [12] the authors propose a way of bypassing the gradient
calculation by partially utilising the concept of a Generative Adversarial Net-
work (GAN). In this approach an autoencoder is applied to craft the poisoned
datapoints, with the loss function deciding the rewards. The data is fed to a
neural network, and the gradients are sent back to the generator. The effec-
tiveness of their method is tested thoroughly on the well-known MNIST and
CIFAR-10 datasets. The chosen architecture is a two-layer feed forward neural
network with recognition accuracy of 96.82% on the MNIST dataset, and for
CIFAR-10 a convolutional neural network with two convolutional layers and two
fully-connected layers, with the accuracy of 71.2%. For demonstrative purposes,
one poisoned datapoint is injected at a time. The authors conclude that the gen-
erative attack method shows improvement over the direct gradient methods and
stipulate that it is viable for attacking deep learning and its datasets, although
more research is required. A targeted backdoor attack is proposed in [13]. The
premise of the method is to create a backdoor to an authentication system based
on artificial intelligence, allowing the adversary to pass the authentication pro-
cess by deceiving it. The poisoning datapoints are created specifically to force
an algorithm to classify a specific instance as a label of the attacker’s choice.
The authors propose a method that works with relatively small poison samples
and with the adversary possessing no knowledge of the algorithm utilised. This
claim is backed up by a demonstration of how inserting just 50 samples gets a
90% success rate.

3 Fairness in Machine Learning

3.1 Background and definitions

Fairness in Machine Learning (or Artificial Intelligence in a broader sense) is a
concept which is getting an increased amount of attention with the growing pop-
ularity of AI in different society-impacting applications. Fairness in AI is mainly
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ethically and legally motivated. It is also a fertile ground to spread politically
motivated disinformation, when used maliciously.

The background of the fairness concept in AI results from the misinformed,
but widespread perception of Artificial Intelligence and AI/ML-based decision
making as fully objective. In practice, the fairness of AI-driven decisions depends
highly on the data provided as the input to learning algorithms. This data can
be (and often is) biased due to several reasons: 1) bias of human operators
providing this data as input, resulting e.g. in biased labeling of samples, 2) data
unbalance/misrepresentation of e.g. specific minority groups, 3) historical bias
(discrimination) [14].

In addition, in [15] there is a list of potential causes of bias in training datasets
leading to unfairness in AI:

– Skewed sample – misrepresentation of training data in some areas that
evolves over time. In that way the future observations confirm biased pre-
diction and misrepresented data samples give less chances for contradicting
observations.

– Tainted examples - the bias existing in the old data caused by human bias
is replicated by the system trained on this data.

– Limited features - reliability of some labels from a minority group (e.g. un-
reliably collected or less informative) impacts the system and may cause the
lower accuracy for the predictions related the minority group.

– Sample size disparity – causing difficulties in building a reliable model of the
group described by an insufficient data sample.

– Proxies – correlation of sensitive biased attributes (even if not used to train
an ML system, encrypted, etc.) with other features preserves a bias in pre-
dicted output.

All those reasons result in inaccurate decisions based on (or related to) sen-
sitive attributes such as gender, race or others. A decision-making process is
affected by disparate treatment if its decisions are based on these sensitive at-
tributes. In summary, the definition of unfair machine learning process can be
formulated as a situation in which an output tends to be disproportionately ben-
efitting (or unfair) towards the group characterized by certain sensitive attribute
values. However, this commonly used definition is too abstract to reach a consen-
sus on the mathematical formulations of fairness. The majority of definitions of
fairness in ML include the following elements [14][16][17]: group fairness (includ-
ing demographic parity, equalized odds and predictive rate parity), unawareness,
individual fairness and counterfactual fairness.

The author of [14] discusses some solutions to address each of these elements:

– Not including sensitive attributes’ values in a training dataset (addressing
the unawareness and disparate treatment of subjects). The challenge here is
in the existence of the proxies, i.e. non-sensitive attributes used to train ML
system highly correlated with eliminated sensitive attributes.

– Statistical parity of different groups in the training sample – e.g. application
of the so-called 80% rule - the size of the sample belonging to the group
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with the lowest selection rate should be at least 80% in comparison to the
mostly represented group (proportion should be higher than 4/5). This could
prevent from extreme misrepresentation of minor groups.

– Optimal adjustment of learned predictor to reduce discrimination against a
specified sensitive attribute in supervised learning according to the equalized
odds definition [18].

– Replacing the original value of the sensitive attribute by the counterfactual
value propagated “downstream” in the causal graph. This addresses counter-
factual fairness and provides a way to check and explain the possible impact
of bias via a causal graph [19]. As pointed in [14], in practice in many appli-
cations it is hard to build a causal graph and the elimination of correlated
attributes can result in significantly decreased accuracy of prediction.

3.2 State of the art on algorithm for fair ML

As the fairness in ML/AI is a trending topic, there are many algorithms fo-
cusing on improving fairness in ML described in the literature. Most of them
fall into three categories: preprocessing, optimization at training time, and post-
processing [14]. In general, algorithms belonging to the same category are char-
acterized by common advantages and flaws.

Preprocessing The idea is based on building a new representation of input
data by removing the information correlated to the sensitive attribute and at
the same time preserving the remaining input information as much as possible.
The downstream task (e.g. classification, regression, ranking) can thus use the
“cleaned” data representation and produce results that preserve demographic
parity and individual fairness. In [20] authors use the optimal transport theory
to remove disparate impact of input data. They also provide numerical analy-
sis of the database fair correction. In [21] authors propose a learning algorithm
for fair classification addressing both group fairness and individual fairness by
obfuscating information about membership in the protected group. Authors of
[22] propose a model based on a variational autoencoding architecture with pri-
ors that encourage independence between sensitive and latent factors of data
variation. To remove any remaining dependencies an additional penalty term
based on the “Maximum Mean Discrepancy” (MMD) measure is additionally
introduced. A statistical framework for removing information about a protected
variable from a dataset is presented in [23], along with the practical application
to a real-life dataset of recidivism, proving successful predictions independent of
the protected variable, with the predictive accuracy preserved. [24] proposes a
convex optimization for learning a data transformation with three goals: control-
ling discrimination, limiting distortion in individual data samples, and preserving
utility.

The advantages that are common for fair pre-processing algorithms include
the possibility to use preprocessed data for any downstream task and no need to
modify the classifier. There is also no need to access the sensitive attributes at
testing time. In contrast, preprocessing algorithms can be used only to preserve
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statistical parity and individual fairness, and their performance in terms of ac-
curacy and fairness trade-off are not as promising as in the case of two other
groups of algorithms.

Optimization at training time Data processing at training time provides
good performance on accuracy and fairness measure and ensures higher flexibility
in optimizing the trade-off between these factors. The author of [14] describes
that the common idea that can be found in the state-of-the-art works falling
into this category of algorithms is to add a constraint or a regularization term
to the existing optimization objective. Recent works considering algorithms to
ensure ML fairness applied at the training time include: [25] where the problem
of learning a non-discriminatory predictor from a finite training set is studied
to preserve “equalized odds” fairness, [26] and [19] where a flexible mechanism
to design fair classifiers by leveraging a novel intuitive measure of the decision
boundary (un)fairness is introduced, and [27] that addresses the problem of
reducing the fair classification to a sequence of cost-sensitive classification prob-
lems, whose solutions provide a randomized classifier with the lowest (empirical)
error subject to the desired constraints.

The disadvantages of abovementioned approaches include the fact that these
methods are highly task-specific and they require a modification of the classifier,
which can be problematic in most applications/cases. Post-processing The
post-processing algorithms are focused on editing the posteriors to satisfy the
fairness constraints and can be applied to optimize most of fairness definitions
except the counterfactual fairness. The basic idea is to find a proper threshold
using the original score function for each group. An exemplary recent work that
falls into this category is the publication [18], in which the authors show how to
optimally adjust any learned predictor to remove the discrimination according
to the “equal opportunity” definition of fairness, with the assumption that data
about the predictor, target, and membership in the protected group are available.

The advantage of post-processing mechanisms is that retraining/changes are
not needed for the classifier (the algorithm can be applied after any classifier).
Another benefit comes in the form of good performance in the terms of fair-
ness measures. The disadvantages include a need for test-time access to the
protected attribute and the lack of flexibility in picking the accuracy–fairness
tradeoff [14]. Summary The author of [27] provides an experimental compar-
ison of the selected algorithms applied to reduce unfairness using four real-life
datasets with one or two protected sensitive attributes (gender or/and race).
The selected methods include preprocessing, optimization at training time and
post-processing approaches. The methods that achieve the best trade-off between
accuracy and fairness are those falling into the optimization at training time cat-
egory, while the advantage related to the implementation of preprocessing and
post-processing methods is the preservation of fairness without modifying the
classifiers. In general, experimental results prove the ability to significantly re-
duce or remove the disparity, in general not impacting the classifier’s accuracy
for all the methods. The reduction methods (optimization at training time) used
to preserve the demographic parity achieve the lowest constraint violations, out-
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performing or matching the baselines. The post-processing algorithm performs
well for small violations. Pre-processing algorithms (based on reweighting and
relabeling) achieve the worst fairness measures [14][27].

4 AI explainability and interpretability

The aspects of explainability and interpretability are trending topics in the area
of Machine Learning and Artificial Intelligence in general as well. As discussed
in [28] and [29] these two terms – explainability and interpretability tend to
be used (also in literature) interchangeably, however despite the fact that they
are related concepts, there are some minor differences in their meanings. Inter-
pretability addresses the aspects related to observation of AI system outputs.
Interpretability of AI system is higher, if the changes of the systems outputs in
result of changing algorithmic parameters are more predictable. In other words,
system interpretability is related to the extent to which a human can predict
the results of AI systems based on different inputs. In contrary, explainability
is related to the extent to which a human can understand and explain (liter-
ally) the internal mechanics of an AI/machine learning system. In its simplest
form, the definition of explainability refers to an attempt to provide insights
into the predictor’s behavior [30]. According to [29], nowadays, attempts to de-
fine these concepts are not enough to form a common and monolithic definition
of explainability and interpretability and to enable their formalization. It is also
worth mentioning, that the “right to explanation” in the context of AI systems
directly affecting individuals by their decisions, especially legally and financially
is one of the subjects of the GDPR [31].

Different scientific and literary sources focus on surveying and categorization
of methods and techniques addressing explainability and interpretability of de-
cisions resulting from AI systems use. [28] discusses the most common practical
approaches, techniques and methods used to improve ML interpretability and to
enable more explainable AI. They include, among others, algorithmic general-
ization, i.e. shifting an attitude from case-specific models to more general ones.
Another approach is paying attention to feature importance, described also in
[30] as the most popular technique addressing ML explainability, also known as
feature-level interpretations, feature attributions or saliency maps. Some of fea-
ture importance-based methods found in the literature are perturbation-based
methods based on Shapley values adapted from the cooperative game theory.
In the explainability case, Shapley values are used to attain fair distribution of
gains between players, where a cooperative game is defined between the features.
In addition, some recent works [28][32] show that adversarially trained models
can be characterized by increased robustness but also provide clearer feature
importance scores, contributing to improved prediction explainability. Similar
to the feature importance way, counterfactual explanations [30] is a technique
applied in the financial and healthcare domains. Explanations using this method
are based on providing point(s) and values that are close to the input values for
which the decision of the classifier possibly changes (case-specific threshold val-
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ues). Another method used for increasing explainability of AI-based predictions
is LIME (Local Interpretable Model-Agnostic Explanations) based on approx-
imation of the model by testing it, then applying changes to the model and
analysis of the output. DeepLIFT (Deep Learning Important Features) model is
used for the challenge-based analysis of deep learning/neural networks. As de-
scribed in [28] DeepLift method is based on backpropagation, i.e. digging back
into the feature selection inside the algorithm and “reading” neurons at subse-
quent layers of network.

In the literature one can find different attempts of categorization of the meth-
ods aimed at increased explainability of AI. Integrated/Intrinsic and post-hoc
explainability methods [29] [33] is one of such categorization. Intrinsic explain-
ability in its simplest form is applicable to the low complexity models (linear
ones, decision trees, rule-based) where the explanation of a simple model is the
model itself. On the other hand, more complex models are explainable in a post-
hoc way, providing explanations after the decision and using techniques such as
feature importance, layer-wise relevance propagation, or the mentioned Shap-
ley values. Other forms of post-hoc explanations include also textual and visual
justification of the decision.

Similar categorization is given in [33] where in-model (integrated/intrinsic)
and post-model (post-hoc) methods exist alongside additional pre-model inter-
pretability methods. Pre-model methods are applicable before building (or selec-
tion) of the ML model and are strictly related to the input data interpretability.
They use mainly classic descriptive statistical methods, such as PCA (Principal
Component Analysis), t-SNE (t-Distributed Stochastic Neighbor Embedding),
and clustering methods such as k-means. Another criterion described in [33] is
the differentiation into model-specific and model-agnostic explanation methods.
In the majority of cases model-specific explanation methods are applicable to
the intrinsically interpretable models (for example analysis and interpretation of
weights in a linear model), while model-agnostic methods can be applied after
the model and include all post-hoc methods relying on the analysis of pairs of
feature input and output.

Alternative criterion based on explanation methods is described in [34]. In
such differentiation, methods are categorized based on type of explanation that
the given method provides, including: feature summary (providing statistic sum-
mary for each feature with their possible visualization), model internals (for in-
trinsic explainable or self-explainable models), data point (example-based mod-
els) and a surrogate intrinsically interpretable model - that is trained to approx-
imate the predictions of a black box model.

According to [33] and [35] explanation models can be evaluated and com-
pared using qualitative and quantitative metrics, as well as by comparison of
the explanation method’s properties, including its expressive power, translu-
cency (model-specific vs. model-agnostic), portability (range of applications) and
computational complexity. On the other hand, individual explanations can be
characterized by accuracy, fidelity, consistency (similarity of explanations pro-
vided by different models), stability, comprehensibility, certainty, to list most
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relevant ones. According to the literature we can also distinguish qualitative
and quantitative indicators to assess the explanation models. Factors related
to quality of explainability are: form of the explanation, number of the basic
units of explanation that it contains, compositionality (organization and struc-
ture of the explanation), interactions between the basic explanation units (i.e.
intuitiveness of relation between them), uncertainty and stochasticity. Quantita-
tive indicators are presented in some works (e.g. [33][36][37]). The most common
metrics used to quantify the interpretation of ML models are identity, sepa-
rability and stability. These three factors provide the information on to what
extent identical, non-identical and similar instances of predictions are explained
in identical, non-identical and similar way, respectively. In addition, according
to [36] the explanation should be characterized by high completeness (coverage
of the explanation), correctness and compactness. However, these indicators are
applicable only to simple models (rule-based, example-based).

5 Conclusions

In this paper recent research in secure, explainable and fair machine learning
was surveyed. The high number of related works shows that those aspects are
becoming crucial. At the same time an increasing number of researchers are
aware that in machine learning the numeric results are not the only thing that
matters. This work is a part of the SAFAIR Programme (Secure and Fair AI
Systems for Citizens) of the H2020 SPARTA project that focuses on security,
explainability, and fairness of AI/ML systems, especially in the cybersecurity
domain. Moreover, the same aspects (secure, fair and explainable ML) are a
part of the project SIMARGL focusing on detection on malware by advanced
ML techniques. We believe that even more projects will contain the work on
secure and explainable machine learning, and that this survey will be helpful
and might inspire more researchers in ML community to seriously consider those
aspects.
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