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Abstract

Intrusion Detection and the ability to detect attacks is a crucial aspect to ensure cy-

bersecurity. However, what if an IDS (Intrusion Detection System) itself is attacked;

in other words what defends the defender? In this work, the focus is on countering

attacks on machine learning-based cyberattack detectors. In principle, we propose the

adversarial machine learning detection solution. Indeed, contemporary machine learn-

ing algorithms have not been designed bearing in mind the adversarial nature of the

environments they are deployed in. Thus, Machine Learning solutions are currently

the target of a range of attacks. This paper evaluates the possibility of deteriorating the

performance of a well-optimised intrusion detection algorithm at test time by crafting

adversarial attacks with the four of the recently proposed methods and then offers a way

to detect those attacks. The relevant background is provided for both artificial neural

networks and four ways of crafting adversarial attacks. The new detection method is

explained in detail, and the results of five different classifiers are compared. To the best

of our knowledge, detecting adversarial attacks on artificial neural networks has not yet

been widely researched in the context of intrusion detection systems.

1. Introduction

In this paper, two immensely important and emerging topics are discussed. The first

regards the use of Machine Learning (ML) techniques for Intrusion Detection Systems

(IDS) in the Cybersecurity domain; a practice which is widespread and, one could say,
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unavoidable with the volumes of traffic present in contemporary network usage. The

topic has been gaining traction for some time now and massive amounts of brilliant

research work have been conducted to further the speed, accuracy, precision and other

valuable measures for ML-based IDS.

The other topic has become significantly more relevant over the last couple of years.

With ML-based solutions and Artificial Intelligence (AI) technologies finding their way

into virtually every facet of present-day’s life, a number of new challenges regarding

these methods came to surface. One of the most pressing issues comes in the form of

Adversarial Attacks. In recent years, the data-driven algorithms, the mechanisms that

comprise the inner workings of many intelligent systems, have themselves been the

subject of a barrage of attacks.

The case of adversarial attacks, as brought to light by [1], is rapidly developing into

a serious peril for modern AI applications, principally with the current proliferation of

data-driven technologies in extraordinarily vital applications, like autonomous driving,

biometrics or cybersecurity [2]. As noted in [3], adversarial attacks can be dangerous

if used, for example, to change the classification of stop road-signs into yield [3] or

speed limit [4]. By the same token, a slight perturbation can allow malware to avoid

detection [5]. A well executed adversarial attack against a Network IDS can circumvent

the detection, which is a direct challenge to the existence of the machine-learning based

intrusion detection systems. Answering this predicament is the motivation of this work.

The major contribution of this paper comes in the proposition and the examination

of a detection system capable of intercepting adversarial attacks on IDS.

The proposed solution is a novel approach to handling adversarial attacks against

artificial neural networks. In this work:

• four different adversarial attack methods are implemented

• a method of detecting those attacks is introduced

• the method does not influence the detection results of the IDS

• the solution is experimentally tested on a recent IDS benchmark dataset
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• five different pattern recognition algorithms were tested in the detection pipeline,

and the results are provided

The paper is structured as follows: in Section 2 related works in the relevant do-

mains are disclosed. In Section 3 the proposal for a novel method of evasion attack

detection is outlined, in Section 4 the experimental setup and results are reported and

in Section 5 the conclusions are given.

2. Related Work

In this section, an overview of recent and relevant papers in the domain is given.

Firstly, information on Artificial Neural Networks (ANN) and their usage in intrusion

detection systems (IDS) and the task of detecting cyberattacks is provided. Then re-

lated works in adversarial attacks and adversarial attacks detection are presented. In

particular, the following types of attacks are tackled: Fast Gradient Sign Method, Ba-

sic Iterative Method, Carlini and Wagner Attack, and Projected Gradient Descent.

2.1. Artificial Neural Networks

The Artificial Neural Network (ANN) is a well-established, versatile modelling al-

gorithm that over the years found immense success in a wide range of applications,

being capable, in its many variants, to handle regression, classification, clustering and

time series analysis. The premise of an ANN is that it resembles, to a point, the cog-

nitive abilities of a biological neural network [6]. The staggering success of ANN

architectures stems from the way they fit to training data, having strong approximation

capacities, a critical property for ML algorithms deployable in real-world applications.

ANN fits to data by adjusting the weights of the neural nodes on successive lay-

ers ensuing batches of data. This procedure allows for exceptional recognition of the

relations among the inputs and grants the ability to generalise well enough to perform

successfully on unforeseen data [7]. Fundamentally the process is like fitting a line, or

a plane, or a hyper-plane through a set [8].

The algorithm allows to build a virtually infinite number of architectures, with dif-

ferent number of layers, different numbers of neurons on each layer, the neurons having
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a range of options in terms of their activation function, batch size, number of epochs;

the optimiser can be chosen as well, all of that topped with a custom loss function. The

optimisation of an ANN and all its hyperparameters for the use in Intrusion Detection

has been evaluated in-depth in [9].

An ANN of just one layer is usually referred to as a perceptron. With all the features

from the feature vector fed to the input layer, they go directly to the computational

layer. The input layer consists of d nodes that speak for d features X = [x1...xd] and

edges of weight W = [w1...wd]. The output neuron computes W ·X =
∑d
i=1(wixi).

As a way to deal with possible distribution imbalance, bias b can be utilised.

The prediction of ŷ comes then as the result of the following:

ŷ = sign{W ·X + b} = sign{
d∑
i=1

wixi + b}

It is apparent in this case, with sign as the activation function Φ(v) that the result will

be binary. One of the most commonly used activation functions in contemporary ANNs

is the Rectified Linear Unit (ReLU). This is also the activation used in this work for

both the IDS ANN and the Detector.

The loss function can be defined as the minimisation of the error, understood as the

difference between the test value and the predicted value, so E(X) = y − ŷ, therefore∑
(X,y)∈D

(y − sign{W ·X})

2.2. Artificial Neural Networks in Intrusion Detection

A wide number of different ANN setups for the use in IDS has been proposed over

the last few years. The authors of [10] evaluate a range of different ANN architectures

to check the relationship among precision, recall, accuracy, and the complexity of the

network. In general, the authors conclude that more complex networks are able to, to

a point, improve the detection results. This, however, comes at the cost of a higher

computational requirement of the setup.

[11] tests a simple, but GridSearch optimised ANN over a part of the CIC-IDS

dataset. The authors claim the testing accuracy of 99.97%.
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A range of algorithms is evaluated in [12] to model anomaly detection in HTTP

requests.

In [13] the authors present an evaluation of shallow and deep NN architectures for

IDS. Testing a range of setups over the KDD99 dataset, the best performing one - a

Deep NN of 3 layers, achieves results better than other architectures and a range of

classical machine learning algorithms alike. The reported accuracy is 0.930, with the

precision of 0.997, recall of 0.915 and the f1-score of 0.955.

In [14] a Convolutional Neural Network is suggested for feature extraction and clas-

sification. The architecture, which consists of three convolutional layers intertwined

with three max-pooling layers, achieves 99.23% accuracy in experiments conducted

on the KDD99 dataset [15].

Similarly, a CNN architecture utilising 3 convolutional layers - one 1x1, one 3x3

and one 5x5 with batch normalisations after each layer (except the fully connected

layer) is evaluated in [16]. To counter the vanishing/exploding gradient problem a con-

straint to normal distribution of N(0, 1) is introduced on each layer. The convolutional

layers are set up to follow the ’Inception’ model. ReLU is used as the activation func-

tion. The proposed architecture achieves 94.11% accuracy, trained and tested over the

KDD99 dataset [16]. [17] describes combining two neural network architectures for

network intrusion detection, a Deep Confidence Neural Network for feature extraction

and an ANN for classification. The experiments are performed over the KDD’99 [15]

dataset. The Deep Confidence NN is a variant of the Restricted Boltzman Machine

(RBM) [18], a neural network used to figure out the probability distribution over its

set of inputs. The authors prove better results as compared to Principal Component

Analysis (PCA) [19] by almost 10 percentage points in four tests.

Some researches study the possibility of using a Long Short-Term Memory (LSTM)

network for intrusion detection. An LSTM is was conceived to recognise long-term de-

pendencies in the data. In [20] the network has its hyperparameters optimized, with the

ADAM optimizer selected. The authors find the LSTM architecture in conjunction

with the ADAM optimizer valid for IDS.

Similarly, the authors of [21] test the LSTM setup for validity as IDS. It is trained

on the KDD’99 benchmark as well. The LSTM is optimized for preferable hyperpa-
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rameters and when stacked against traditional Machine Learning algorithms, the results

are promising.

There are studies that examine one of the most novel ANN builds, the Gated Re-

current Unit (GRU) [22] for the use in IDS [23] and [24], with KDD’99 and NSL-KDD

datasets utilised respectively. The GRU, concisely put, is an extension of the recurrent

neural network architecture, with the ability to recognise temporal patterns in the data,

but not as prone to overfitting as the Long Short-Term Memory variant. The achieved

accuracy exceeds 98% for [24] and 99% for all the GRU setups in [23].

In [25] a systematic review of 43 articles on the use of ANN in IDS can be found.

According to the authors, the research in the field is on the rise and is predicted to be a

trending topic in the upcoming years.

2.3. Adversarial Machine Learning and Attack Generation

Over the last few years, the research into the curious properties of ML has exploded.

The fact that a skilfully crafted feature vector can fool even the classifiers that exceed

human performance on a benchmark dataset has riveted the attention of the AI scientific

community. With the awareness of the issue rising, a range of soft spots has been found

[26]. Adversarial examples are the samples that for all intents and purposes look almost

identical to correctly classifiable data; however, with a small, intentional, worst-case

perturbation that can cause a range of ML algorithms, most notably artificial neural

networks, to fail [27].

2.3.1. Fast Gradient Sign Method

The authors of [28] found a rapid approach to dependably produce adversarial ex-

amples that lead an array of ML methods to misclassify. The method was initially

demonstrated on ImageNet, MNIST [29] and CIFAR-10 [30] datasets. It relies on find-

ing a small adversarial noise vector that when summed up corresponds with the sign

of the elements of the gradient of the cost function for the evaluated sample. The Fast

Gradient Sign Method can be defined as the linearization of the cost function around

the current value of Θ, obtaining an optimal max-norm constrained perturbation of

η = εsign(∇xJ(Θ, x, y))
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Where Θ stands for the parameters of the model, x for the inputs to the model, y for

the targets of the corresponding x and J(Θ, x, y) is the cost utilised to train the ANN

[28]. The method is referred to as Fast Gradient Sign Method (FGSM), Fast Gradient

Method (FGM) or simply Fast Method in literature.

2.3.2. Basic Iterative Method

The authors of [31] offer an extension to the FGM method, applying it multiple

times using a small step size, clipping the values after every transitional pace, also

using α = 1, which translates to changing the value of each element (i.e. pixel) by

1. In their work the authors have chosen the number of iterations heuristically to be

enough to reach the border of the ε max-norm ball. The formula used is as follows:

Xadv
0 = X1, X

adv
N+1 = ClipX,ε

{
Xadv
N + αsign(∇xJ(Xadv

N , ytrue))
}

2.3.3. Carlini and Wagner Attack

[32] offer the solution to the adversarial example creation by formulating the opti-

misation problem in a way that can be dealt with by current algorithms. The optimisa-

tion problem is formally defined as

minimise D(x, x+ δ)

such that C(x+ δ) = t

x+ δ ∈ [0, 1]n

where x does not change, so one aims to find δ that minimises D(x, x + δ). In

other words - finding δ that will change the classification. D is a distance metric; in

their paper the authors evaluate three of them - L0, L2 and L∞; however, for the use in

this paper L2 was selected.

To make the formula solvable, the authors redefine an objective function f so that

C(x + δ) = t when f(x + δ) ≤ 0 and offer a range of options for the f formula. In

this work the attack defined in [32] as the L2 attack was used.
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2.3.4. Projected Gradient Descent

In [33] Projected Gradient Descent is put forward as the strongest attack and the

universal ’first order adversary’, as it is the definitive method for constrained large-scale

optimization. Essentially, the abovementioned FGM is a one-step method for generat-

ing adversarial examples; in theory a more dangerous option would be the multi-step

procedure, which the authors call ’essentially projected gradient descent’, formulated

as follows:

Xt+1 = Πx+S(xt + αsgn(∇xL(Θ, x, y)))

2.3.5. Summary of Adversarial Attack Generation

Following the summary found in [33], the attack model can be definitively formu-

lated as a two-level optimisation problem, expressed by the following:

min
θ
ρ(Θ), where ρ(Θ) = E(x,y)∼D[max

δ∈S
L(Θ, x+ δ, y)]

where S is the set of allowed perturbations, D is the distribution, L is the loss and

E(x,y)∼D is the perturbed input before the sample is fed to the loss. This formulation

allows to consider the inner maximisation and the outer minimisation problems.

In essence, the four abovementioned attacks are four different approaches to solving

this formula.

2.4. Adversarial Capabilities

The hazard level of an adversary is driven by the intelligence it can gather on the

workings of the targeted algorithm; this, in turn, influences the variety of attacks they

can employ. In literature, this level of acquaintance is called Adversarial Capabilities,

categorised as black box and white box [34, 26]. Simply put, black box adversaries

do not know anything about the algorithm they attack, in contrast to white box adver-

saries, who possess full knowledge of the algorithm and thus are the strongest possible

adversaries [34].

The adversarial model in this paper assumes full knowledge of the algorithm.
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In a real-life scenario model extraction, which is a different kind of adversarial

attack on machine learning, can be used to steal a working model and use it to create

evasion adversarial attacks [35].

2.5. Countering Adversarial Attacks

A number of possible defences against the effects of adversarial examples have

been put forward. One of the defences to be proposed is adversarial retraining, either

by trying to correctly classify the adversarial example itself [27, 28, 36, 37] or by

creating a separate class for adversarial examples.

This method has its merits, but is not effective on unforeseen attacks, and causes a

deterioration of the model in many applications.

A different way of countering the problem comes in the form of Defensive Dis-

tillation. Proposed in [38], it was initially a procedure used to form a Deep Neural

Network (DNN) with knowledge gained from another DNN, but with reduced com-

putational complexity, transferring the knowledge to smaller architectures [39]. The

method infers supplementary observations about training samples coming in the form

of class probabilities, the information which is then used as training input for the orig-

inal DNN. The method generates smoother classification models, thus reducing lower-

ing their responsiveness to adversarial examples [38]. Carlini and Wagner attack proves

effectiveness against Defensive Distillation in [32].

There are some researchers who propose training a second classifier to detect Ad-

versarial Examples [40]. The authors claim robustness to FGM and Jacobian Saliency

Map Attacks [41]. The approach, however, learns to distinguish adversarial examples

from the non-adversarial ones using the same distribution and thus can be evaded by

formulating the attack to find adversarial examples that fool both classifiers at the same

time, as demonstrated by [42].

An approach most similar to the one suggested in this paper can be found in [43],

where the authors inspect the activations of certain layers in the ResNet [44] Convolu-

tional Neural Network. The detector, as the authors put it, performs surprisingly well

on CIFAIR10 and ImageNET datasets.

In contrast, the work contained in this paper takes into consideration all the neural
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activations in all the layers, thanks to the fact that the architecture used in intrusion

detection, with satisfactory results, uses fewer layers and fewer neurons on those layers.

To the best of our knowledge, this is the first time using neural activations will be

applied to detecting adversarial examples in intrusion detection.

The general consensus among the researches with regard to the defensive measures

is that no fully safe system has been put forward and no truly field-proven solutions

exist [45]. The methods developed to this point apply to certain kinds of attacks, but

do not provide defence against all possible adversarial attacks. Some of those solutions

lead to the deterioration in ML performance [26].

3. Proposed Method for Evasion Attack Detection in Neural Networks

In this section, the overall approach for Evasion Attack Detection in Neural Net-

works will be presented. Firstly, the utilised dataset is disclosed, which is followed by

the applied dataset preprocessing and the IDS training pipeline. Then the attacks on

the IDS are performed and tested. The neural activations of those attacks, as well as

the activations for clear samples are gathered; finally the attack detector is trained and

tested.

3.1. Intrusion Detection based on an Artificial Neural Network

In this work, the dataset was first cut into four parts in a stratified fashion to ensure

full coverage of all kinds of attacks included in the dataset in all its sub-parts. This

procedure results in the following setup:

• Dataset A - used to train the IDS classifier

• Dataset B - used to test the IDS classifier and to craft the adversarial attacks,

and test them on the original IDS ANN, then to acquire the activations of neural

nodes in the IDS network of benign, attack and adversarial samples to train the

Adversarial Detector

• Dataset C and D - used to craft test adversarial samples and acquire the activa-

tions for the neural nodes of benign, attack and adversarial samples
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Figure 1: The utilisation and partitioning of the dataset for training and testing of IDS ANN and the

Adversarial Detector

All of the sub-parts were then turned into a binary classification task, leaving all the

benign samples as ’BENIGN’, but changing all the names of possible attacks to simply

’ATTACK’. The utilisation and partitioning of the dataset is depicted in Fig. 1.

The pipeline of the IDS training/testing process is showcased in Fig.4. As seen

in the figure, the binarized dataset is fed to the architecture described above, and the

training procedure results in building a model capable of binary classification.

3.2. Adversarial Attacks

After testing the trained IDS (the optimisation procedure of an ANN-based IDS can

be found in [9]) four different adversarial attacks were crafted based on the ATTACK

class of Dataset B. The algorithms used for the creation of evasion attacks were:

• Carlini and Wagner attack (CW) [32]
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Table 1: ’IDS ANN’ trained on Dataset A and tested on Dataset B

precision recall f1-score support

ATTACK 0.96 0.97 0.97 139675

BENIGN 0.99 0.99 0.99 405383

micro avg 0.98 0.98 0.98 545058

macro avg 0.97 0.98 0.98 545058

weighted avg 0.98 0.98 0.98 545058

samples avg 0.98 0.98 0.98 545058

• Fast Gradient Sign Method (FGM) [28]

• Basic Iterative Method (BIM) [31]

• Projected Gradient Descent (PGD) [33]

1397 samples of the ’ATTACK’ class were randomly extracted from Dataset B and

turned into adversarial samples with the use of those four algorithms. The IDS ANN

classified those as 1353 ATTACKS and 44 BENIGNS. Using adversarial attacks we

were able to force the IDS ANN to classify 1296 ’ATTACK’ as ’BENIGN’ samples for

BIM and PGD, 1324 for FGM and 59 for CW.

The abovementioned procedures introduce adversarial noise to the samples. This

noise resulted in negative values in some of the features. Those negative values were

supplanted by zeros with some loss of effectiveness of those attacks -

55 more attacks were classified as benign samples with the original BIM and PGD

methods, 295 more for CW and interestingly, 21 fewer for FGM.

The samples from Dataset B not used in crafting Adversarial Attacks were anno-

tated as ’nonadversarial’, the Adversarial Attacks were labelled ’adversarial’. With

5588 adversarial attack samples, a matching number of nonadversarial records was

randomly picked from the unused samples of Dataset B to form the base for a balanced

’Adversarial Training Dataset’ for the adversarial attack detector. The procedure is de-

picted in Fig. 3. Dataset D was subjected, except for the balancing, to the exact same

12



Figure 2: The acquisition of IDS ANN activations for a given test sample

crafting/annotation procedure to form the base for the testing dataset for the detector.

Algorithm 1: Acquisition of the activation dataset
Result: Neural Activations Dataset

AttackedDataset = dataset + AdversarialAttacks;

for row in AttackedDataset do

activationsVector = get activations(row) ;

if sample = adversarial then

activationsVector.Label = ’adversarial’;

else

activationsVector.Label = ’non-adversarial’;

end

NeuralActivationsDataset += activationsVector;

end
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Figure 3: Forming the Adversarial Training Dataset from Dataset B

3.3. Detection Method

The training and testing activation datasets were fed to the IDS ANN and the ac-

tivations for all 102 neurons (including the softmax layer), as shown in Fig.2, were

recorded and annotated as adversarial or nonadversarial respectively.

4. Experimental Setup and Results

4.1. IDS ANN Setup

The IDS setup was as follows: An Artificial Neural Network of 3 hidden layers

was compiled, with 40 neurons on the first hidden layer, 40 on the second and 20 on

the third layer. The Rectified Linear Unit activation function was utilised, and the

optimiser selected was ADAM. With batch size of 100 and 10 epochs, the network

achieved the accuracy of 0.9827 when trained with Dataset A and tested on Dataset B.

The precision, recall and f1-score are showcased in Tab. 1

4.2. Detector Setup

The recorded activations were used to train the detector artificial neural network.

The architecture of the detector is as follows: 3 hidden layers with the ReLU activation
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Figure 4: The IDS ANN pipeline

Figure 5: The Adversarial Detector Training/Testing Pipeline

function, 51, 51 and 25 neurons respectively and the ADAM optimiser. The training

/ testing pipeline is presented in Fig. 5. Using batch size of 100 and just 10 epochs,

the detector achieved the accuracy of 0.8506 on the testing set. The detailed results are

assembled in Tab. 2.

The detector achieves high accuracy and the recall for the adversarial class signifies

that it can recognise the attacks with great promise. The precision however is the

evidence of a high number of false-positives.

Since in the process of creating the ANN-based adversarial attack detector a dataset

of neural activations of the IDS architecture was created, the authors proceeded to test
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Table 2: Results of Adversarial Attack Detector over the test set activations using various ML classifiers

ANN RandomForest

precision recall f1-score precision recall f1-score support

adversarial 0.06 0.91 0.11 0.11 0.99 0.20 5588

non-adversarial 1.00 0.85 0.92 1.00 0.91 0.95 543661

macro avg 0.53 0.88 0.51 0.56 0.95 0.58 549249

weighted avg 0.99 0.85 0.91 0.99 0.91 0.95 549249

ADABoost SVM

adversarial 0.07 0.90 0.13 0.11 0.79 0.19 5588

non-adversarial 1.00 0.88 0.93 1.00 0.93 0.97 543661

macro avg 0.53 0.89 0.53 0.55 0.86 0.58 549249

weighted avg 0.99 0.88 0.93 0.99 0.93 0.96 549249

Table 3: Results of Nearest Neighbour-based Adversarial Attack Detector over the test set activations

precision recall f1-score support

adversarial 0.11 0.99 0.20 5588

nonadv 1.00 0.91 0.95 543661

macro avg 0.56 0.95 0.58 549249

weighted avg 0.99 0.91 0.95 549249
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the approach using other well-established classifiers. In Tab. 2 the results of detection

with Random Forest (RF) are presented. As immediately apparent, with this kind of

data, RF achieves results superior to ANN, with higher recall and better precision.

Notably, the accuracy of this approach exceeds 91% (91.24).

Following the success of the RF-based classifier, another ensemble method was

tested. The ADABoost algorithm did not surpass the results of the Random Forest,

getting up to only 87.66% accuracy. This, however, is still a better result than the ANN

approach. The details can be found in Tab 2.

The tests were then followed by building a model relying on the Support Vector

Machine algorithm. As can be noticed from investigating the Tab. 2, the SVM was not

as successful in picking up on the adversarial attacks based on the activations as the

other algorithms, with the recall of only 0.79.

Finally, the same activation dataset was utilised to train a nearest neighbour clas-

sifier. The procedure achieved results on par with the Random Forest method. The

details can be found in Tab. 3

4.3. k-fold cross-validated paired t-test

To back the analysis of the experimental results by statistical analysis, the k-fold

cross-validated paired t-test has been performed. The comparison of the best-performing

and worst-performing classifiers revealed that the t-value is 1.3017 and the p-value is

0.104717. The result is not significant at p <0.05; therefore, the presented procedure

is suitable for any of the presented classifiers.

5. Conclusions and future work

The major contribution of this work comes in the form of using neuron activations

at test time to detect adversarial attacks performed with the use of four known evasion

attack algorithms, namely: Fast Gradient Sign, Basic Iterative Method, Carlini and

Wagner attack, and Projected Gradient Descent in the context of cybersecurity. The

authors collected the test time neural activations of an ANN trained on a part of the

CICIDS2017 dataset [46] and the neural activations of the adversarial examples crafted
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for this ANN. Using these activations, the authors trained and tested five different ML

classifiers to detect adversarial examples, achieving the recall of 0.99 for adversarial

attacks with two of the classifiers - Random Forest and the Nearest Neighbour classifier.

The reported results are promising, and suggest the possibility of building an ad-

versarial attack detector which does not affect the classification results of the protected

model, which can drive further research in the direction of defending the networks and

intrusion detection systems based on machine learning algorithms. However, further

lowering of the false positive rate is of utmost importance for the future development

of this method.

While the topic of evasion attacks on artificial neural networks has been gaining in

popularity recently, most of the research is performed on image recognition datasets.

For this reason, it is hard to compare the results of this innovative work with other

defence or detection systems.
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