A FPGA-based Control-Flow Integrity Solution for
Securing Bare-Metal Embedded Systems

Abstract—Memory corruption vulnerabilities, mainly present
in C and C++ applications, may enable attackers to maliciously
take control over the program running on a target machine
by forcing it to execute an unintended sequence of instructions
present in memory. This is the principle of modern Code-Reuse
Attacks (CRAs) and of famous attack paradigms as Return-
Oriented Programming (ROP) and Jump-Oriented Programming
(JOP). Control-Flow Integrity (CFI) is a promising approach
to protect against such runtime attacks. Recently, many CFI-
based solutions have been proposed, resorting to both hardware
and software implementations. However, many of these solutions
are hardly applicable to microcontroller-based embedded sys-
tems, often very resource-limited. The paper presents a generic,
portable, and lightweight CFI solution for bare-metal embedded
systems, i.e., systems that execute firmware directly from their
Flash memory, without any Operating System. The proposed
defense mixes software and hardware instrumentation and is
based on monitoring the Control-Flow Graph (CFG) with an
FPGA connected externally. The solution, also applicable to
legacy systems, forces all control-flow transfers to be compliant
with the CFG, and preserves the execution context from possible
corruption when entering unpredictable code such as Interrupt
Services Routines (ISR).

Index Terms—security, code-reuse attacks, return-oriented
programming, ROP, JOP, embedded systems, microcontrollers,
firmware, bare-metal, backward edges, forward edges, interrupt

I. INTRODUCTION

Embedded devices are nowadays playing a central role in
our lives, as they control most of the objects that surround us.
In addition, such systems create a network of connections that
goes far beyond simple isolated LANs and links up devices
all over the world. A huge amount of sensitive data is thus
put in motion, and related security and privacy issues must be
addressed.

In addition to communication security, a relevant aspect is
the protection of devices themselves and their resilience to
unauthorised intrusions. Physical security is certainly a first
step, but not enough, since vulnerabilities may be contained
in the code that the systems execute. Many of these vul-
nerabilities derive from the widespread use of very powerful
languages such as C and C++. These languages guarantee a
high degree of low-level control, but at the same time they
allow programmers to freely manipulate memory pointers,
so that common weaknesses such as buffer overflow [l1] or
dangling pointers [3] come out.

These vulnerabilities open the door to a family of exploits
commonly known as Code-Reuse Attacks (CRA), in which the
flow of the program is redirected to portions of code already
present in memory but not intended to be executed in that

order. Return-Oriented Programming (ROP) [54] [15] [50]
and Jump-Oriented Programming (JOP) [11] [21] are attack
paradigms belonging to this category. In a paper of 2005 by
Abadi et al. [6]], Control-Flow Integrity (CFI) was suggested
as a basic defence approach. CFI states that every control-
flow transfer occurring during the execution of a program
must target a valid destination, as stated in its Control-Flow
Graph (CFG) computed ahead of time. Basically, the program
behaviour is observed by an online monitor (software or
hardware), which is able to ensure that no transfer happens
out of those established in its CFG.

In literature, several implementations of CFI have been
presented. Purely software solutions are mostly based on
code instrumentation [10f] [19]], with additional checks on
the destination of the control-flow transfers. These methods
can however result in a considerable overhead in terms of
added instructions, allocated data structures and/or execution
times, often not acceptable for real-time systems with limited
resources. In other cases, solutions based on multitasking have
been proposed [27] [38] [62], very modular but inapplicable
when the code is directly executed by the processor without the
intervention of an Operating System (bare-metal machines).

Otherwise, hardware-based CFI solutions proposed to insert
security features into the processor architecture, adding ded-
icated registers, instructions, and automatic control functions
on the possible deviations of the program flow [28] [24] [56].
These techniques are very effective but very expensive as well,
as they require redesigning the processor architecture, thus
resulting inapplicable to legacy systems already operating in
the field. Others have proposed the use of the debug interface
provided by the processors to monitor the program behaviour
with an external hardware block [37]], which however leads to
a prohibitive slowdown in performance.

The goal of the present work is therefore to propose a
solution for bare-metal microcontroller systems that, for the
reasons listed above, cannot directly adopt the approaches
proposed so far. We want to stay halfway between software
techniques and hardware techniques by presenting a generic
and lightweight solution, which is based on monitoring the
firmware run by a microcontroller by connecting a FPGA to
an external standard parallel interface and by synthesizing
the monitor onto it. Our technique uses a minimal binary
instrumentation based on single write machine instructions
to communicate to the external device the information about
the status of the CFG. The monitor validates the information
received and stops the processor activity when a deviation is
detected, via a security violation hard fault. The solution is

suitable for any type of platform, future but also already in the
field (legacy). Not being bound to any particular architectural
feature, it does not require the modification of the internal
structure of the microcontrollers and it just requires a parallel
interface (present in any microcontroller) and the connection of
an external FPGA (without the need to fabricate new silicon).
The rest of the paper is organised as follows: Section] pro-
vides some technical background on Control-Flow Hijacking
attacks; Section [[lI| analyses more in details common solutions
and their problems under certain conditions; Section mo-
tivates our work and lists the challenges that are addressed;
Section presents our FPGA-based solution; Section
lists the experimental results obtained from a preliminary
implementation; Section finally concludes the paper.

II. BACKGROUND

The IEEE Spectrum ranking of top programming languages
[4]] reports C and C++ as respectively 2nd and 3rd most used
languages in the embedded system domain still in 2019. The
reasons may be many, but there is no doubt that one of the
great advantages in their use is the availability of low-level
control structure that allows a deep optimisation in resource
usage without losing the advantages of high-level statements.
Although, the direct management of data structures in memory
and the free manipulation of pointers originate a large number
of vulnerabilities. The lack of memory safety capabilities (such
as a strong typization, present in other modern languages)
enables attackers to exploit these flaws by maliciously altering
the program’s behaviour.

One of the most famous vulnerabilities of this kind is buffer
overflow [1]], which is caused by incrementing or decrementing
a pointer without proper boundary checks. This may result
in out-of-bounds writes which corrupt adjacent data on stack,
heap or other zones. Similar problems may rise when indexing
bugs are present in the code, i.e., when boundary checks over
an index for a given data structure are missing or incomplete.
Indexing bugs derive from programming errors collectively
known as integer-related errors, such as integer overflow [2],
incorrect signedness or wrong pointer casting.

Famous are also use-after-free vulnerabilities [3]], for which
a pointer is mistakenly used after the area it points has been
freed and released to the memory management system. After
the free, the pointer still points to the deallocated region, which
in the meanwhile can have been written with other data. The
consequence is that newly allocated data in the heap may be
corrupted by accessing it by these dangling pointers.

Memory vulnerabilities described above may enable attack-
ers to maliciously take control over the program by forcing
it to execute an unintended sequence of instructions. This
exploit is generally called Arbitrary Code Execution (ACE).
To achieve ACE, attackers tamper with the instruction pointer,
which in most architectures is referred to as Program Counter
(PC). The PC stores the address of the next instruction to be
executed: being able to control its content means being able
to decide the next instruction to be executed.

The control over the instruction pointer can be taken, for
instance, by corrupting the memory operand of an instruction
that copies that value into the PC (indirect control-flow transfer
instructions). RET and some formats of CALL and JMP are
example of such instructions, but, in general, any instruction
that treats the PC register as a destination register for a
computing operation can be exploited.

The PC value is corrupted to point to the attacker’s payload.
This was traditionally injected together with the corrupted
instruction pointer into the program memory program (Code
Injection) thank to stack memory vulnerabilities [47]. Such
exploits were made practically impossible after the wide
adoption of main architectural countermeasures like Data Ex-
ecution Prevention (DEP) [57] and Write XOR Execute policy
[58]], for which a memory location cannot be both writable (W)
and executable (X) at runtime. Attackers then devised a new
attack paradigm, in which the payload is composed of snippets
of code already present in the program memory, but not meant
to be executed in that order. This was how Code Reuse Attacks
(CRA) were born. In a paper of 2007 by Shacham et al. [54],
the authors theorized that “in any sufficiently large body of
executable code there will exist sufficiently many useful code
sequences that an attacker who controls the stack will be able
[...] to cause the exploited program to undertake arbitrary
computation”. The control flow can be diverted to execute a
series of small sequences of instructions, each ending with an
indirect control-flow transfer instruction, known as gadgets. In
large codebases present in every C application, such as libc,
the amount of gadgets that can be extracted is high, and the
attackers achieve the maximum of expressiveness [59].

This is the basic idea behind a famous attack paradigm
known as Return-Oriented Programming (ROP) [50]]. In ROP,
the attackers write their malicious code using, instead of
instructions, the gadgets found in the code of the system to
be attacked as basic “bricks”. These gadgets may perform
any kind of general-purpose action, as copying values from
registers to others, loading values from memory, or performing
arithmetic and/or logic operations. The common property they
must have is that theyr last instruction must always be a RET
instruction. Once identified the set of gadgets, attackers fill the
stack with a list of fake return addresses exploiting a memory
vulnerability (Figure [I). Each of the injected addresses points
to the beginning of each of the identified gadgets.

The attack starts when the function that contains the vul-
nerability returns: by executing the RET, the processor copies
the first corrupted value into the PC, and the program flow is
redirected to the first gadget of the sequence. Once the first
gadget is finished, another RET is executed, that carries the
flow to the second gadget, then to the third, and so on (Figure
2).

ROP was demonstrated to be effective over many different
architectures [[15[] [33] [18]] [[17] [40], and then the concept
was extended to non-RET-ended gadgets. Indirect formats of
JMP and CALL can be used as well to reach instructions at
will. Concepts like Jump-Oriented Programming (JOP) [11]]
[21]], Call-Oriented Programming (COP) [52], and others [53]

stack stack
memory
. vulnerabilit
function local Aty corrupted local
A exploitation)
variables variables
stack
growth| | return address corrupted address
function corrupted address
parameters corrupted address
caller stack
frame

Fig. 1: A ROP attack starts filling the stack with a list of fake
return addresses.

0x080076AC
——> POP AX

RET

l—;

0x08010110
stack ——————> POP BX :
RET
0x080076AC ;I
0x08FF0000

0x00000001 XOR AX, BX
0x08010110

O0xFFFFFFFF o
0x08FF0000 ;

0x08010110 —I—)
POP BX

0x08010110

0x00400000
0x08124F08 RET

0x08124F08

3> MOV [BX], AX

o omer

Fig. 2: An example of a ROP attack.

[36]] were introduced.

III. RELATED WORK

Over the years, the research community has tried to address
the threat of CRA with solutions going in the direction of
protecting the memory from its vulnerabilities. Randomisation
of memory segments’ location [9], protection of the return
address on the stack [25]] or replication of the entire stack for
then validating it against corruption [34] [14] [13] and even
heuristic techniques [20] [48]] [23] have been presented.

In 2005 Abadi’s article [6], however, a different approach to
the problem started to be theorised. The paper introduced the
concept of Control-Flow Integrity (CFI) for defending against
CRA regardless of the vulnerability that may cause the exploit.
The concept behind CFI is monitoring the program at runtime
to detect abnormal diversion from what is stated in its Control-
Flow Graph (CFG).

Referring to the definition given in [41], a CFG is a directed
graph G = (V, E) where V represents the set of the basic

blocks of a program and E represents the set of control-flow
transfers that connect such blocks. A basic block (BB) is
defined as a linear sequence of program instructions having
one entry (the first instruction executed) and no branches out
except at the exit. All statements within a basic block are
executed sequentially before transferring the control to the next
basic block. In CFG domain, such control-flow transfers are
usually referred to as edges.

The CFG is computed ahead of the execution, by statically
analysing the source or the binary code of the program, or
even by profiling all the possible paths through one or multiple
test runs. Then, at runtime, no other control-flow transfers are
allowed but those indicated in the CFG. Therefore, in almost
all CFI solutions, it is possible to find (1) an offline phase,
performed before runtime and often in a different environment
from the one of the execution, mainly consisting of analysis
and production of information needed later for verification,
and (2) an online phase, performed at runtime and aimed at
verifying that the parameters obtained by the offline phase are
actually respected during the execution.

To ensure this, a CFI monitor is needed: an entity that,
having been instructed by such parameters, is able to properly
monitor the execution environment to get information about
the performed flow transfers. In literature, plenty of different
monitoring techniques have been presented, usually clustered
into three categories: OS-based, purely software-based and
hardware-based.

OS-based solutions

In OS-based solutions, the CFI monitor is the environ-
ment itself where the program runs, intended as a supervisor
process that runs the supervised application within its own
sandbox. This technique is referred to as Dynamic Binary
Instrumentation (DBI), well explained in [30]]: code is not
executed directly, but rather analysed, instrumented, and com-
piled using a just-in-time (JIT) compiler. Analysis code relies
on an API interface, and the DBI backend monitors program
state switching between analysis routines and observed code
execution. Solutions of this type are presented in [38] and, for
ARM environments, in [39]. Alternatively to JIT compilation,
a probe-based approach can be adopted, where the original
program instructions are executed after having been patched
with trampolines to analysis routines. Such a solution is
presented in [27]], implemented for iOS.

The paradigm followed in [62] is instead slightly different.
Here, the presence of the Branch Table Store (BTS) module
integrated in modern Intel cores [63] is exploited. The module
fills a buffer in memory with the history of control-flow
transfers. This buffer is in the memory space of a process
which is parent of the process under supervision. The parent
process contains all the information about the CFG of the
child, and therefore it is able to block the attack and locate
the anomaly.

All these solutions are highly portable, as they exploit
utilities provided by Operating Systems. They undoubtedly
have overhead in terms of occupied memory and execution

times, but being mostly designed for mobile or desktop OS’s,
the involved overheads are acceptable. Unfortunately, this is
not the case in microcontroller-based systems, where not only
resources are limited, but the firmware is often run directly
from the Flash memory, without the intervention of any OS
(bare-metal). Software solutions for protecting these systems
must therefore integrate the CFI monitor into the supervised
program itself.

Purely software-based solutions

The basic idea first introduced in Abadi’s milestone paper
[6]] is to insert, within the binary code, additional checks before
the transfer to verify its compliance with the CFG. A unique
label is associated with each monitored basic block, and before
an indirect transfer, it is checked whether the register or the
memory location containing the destination address is actually
corresponding to the destination label according to the CFG.
If this is not the case, a violation is detected. In this way, the
monitor is the program itself.

Another defense based on code instrumentation is Control-
Flow Locking (CFL) [10], which inserts instructions to lock the
execution before indirect transfers and instructions to unlock
it at every valid target. The lock variable is set to a value
which is verified by the unlock code before the execution be
allowed to proceed. The lock code is also encharged to verify
whether the ending basic block was unlocked and allowed
to run, otherwise it notifies a violation. The authors of [[10]
propose to use a lock variable which only contains a 0 value
for “unlocked” and a positive or negative value for identifying
the type of branch. A CFL improvement is presented in [19],
where the lock variable is split into several fields to contain
also the identifier of the current BB and the BBs reachable
from it.

Label-based and locking techniques reported so far can
guarantee a very high level of protection, but in principle they
are affected by the problem of overhead and of lack of isolation
of sensitive variables, respectively. In the case of the classical
label-based instrumentation, the number of instructions added
to each branch site for checking can be high, which leads
to an important extra occupation of the program memory
and to execution times slowdown. In some cases, especially
in the embedded domain, memory and timings are tightly
constrained, and these solutions become very inconvenient.
Moreover, in the case of the CFL, there is also the problem
of protecting the lock variable somehow, totally isolating it
from the rest of the execution environment. Finally, as shown
in [45], serious problems may rise if the protection code
is interrupted by a hardware interrupt. In such cases, the
context of the program is entirely pushed onto the stack to
free registers to execute the interrupt service routine (ISR).
Supposing a vulnerable ISR is executed, the pushed context
can be corrupted, and at resuming time the variables to
be checked for security can be reloaded into registers with
different values. The result is that the defense mechanism is
escaped.

A recent paper by Nyman et al. [46] faces all these prob-
lems, proposing a solution for bare-metal embedded systems
with a lower overhead in terms of occupied memory for instru-
mentation. The authors suggest replacing dangerous branches
with calls to a single service routine (via a software interrupt),
that runs inside the ARM TrustZone [8]. The TrustZone is
by definition protected and runs at a higher privilege level
compared to the application, in an isolated environment, so
it can contain sensitive information about the CFG and can
performs CFI checks in a secure manner. Though this is
an excellent solution, it does not take into account the fact
that there is literally a jungle of legacy bare-metal embedded
systems out there, maybe not based on ARM architectures or
not having any TrustZone.

Hardware-based solutions

An alternative way to solve overhead and isolation problems
of a CFI monitor is to design it directly in hardware. In
this way, the program runs normally and the CFI checks are
performed much faster and almost transparently. Furthermore,
the data structures containing CFG critical information belong
to the monitor exclusively, and the main execution has no
possibility of accessing it. Literature has indulged in this
theme, providing a great variety of hardware-assisted CFI
solutions. These can be grouped into families, among which
we intend to present the most significant ones.

Branch target or instruction protection. The authors of [44]
propose the encryption at load-time of the indirect branch
target instructions, and the addition of a processor module that
decrypts on-the-fly these addresses before loading them into
the instruction register. The execution obviously crashes if a
badly-decrypted instruction is run, and to mount a redirection
attack the attacker must know the encryption key (extracted
from a processor PUF [35], so generated each time and
never stored). In [49]], the authors propose a similar method
which involves encrypting with a lightweight version of AES
the return addresses at call time before pushing them, and
decrypting them at return time. Other authors propose to solve
the question at a higher level of abstraction, e.g., marking
code memory pointers as compile-time-generated or run-time-
generated [22], encrypting and decrypting them on-the-fly
[43]], or using special instructions for their load and store and
placing them in a different special stack to isolate them from
buffer overflow vulnerabilities [|34] [51]].

Shadow Call Stack (SCS). Authors in [[7] [14]] [29] propose
the insertion of a call shadow stack into the architecture,
implementing their solution on the RISC-V soft processor. In
[29], the monitor is equipped with a table of the destinations
allowed for each indirect transfer, and gets the status of the
monitored program through a parallel interface with the main
core which basically carries out the instruction register on a
bus.

Basic Block hashing. This technique relies on calculating
the allowed sequence of basic blocks before the execution
and then verifying it at runtime by continuously computing
the hash of the blocks. Authors in [[60] propose as a hardware

trusted module parallel to the main processor that does this
by reading the program counter and instruction register. The
same is proposed in [31] by inserting checking modules
directly connected to the pipeline stages. [26]] and [16]] propose
to install validation modules between the processor and the
instruction cache to sniff the instruction flow.

Modification of Branch Predition circuitry. Possible mod-
ifications or security extensions have also been studied for
the branch buffering and prediction modules present in most
processors [S5] [61] [42].

Insertion of security features in the Instruction Set Architec-
ture (ISA). These solutions give the programmer the possibility
of inserting CFI-dedicated instructions in the program to be
protected. The processor is therefore equipped with internal
data structures as label stacks to protect backward edges and
label registers to protect forward edges, and the instruction
set is augmented with the opcodes necessary to manage them.
Examples are the works presented in [28]] [24] [56], where
changes were made to the original design of some SPARC
soft processors.

All these defense mechanisms are certainly getting the point,
i.e., going down to the lowest possible level to set up the
defense, which makes the system more resilient to whatever
happens on top of it. Rather than questioning their validity,
we want to contest their feasibility. In fact, none of these
solutions can be applied to a microcontroller that is already
operating in the field, since each of these requires an even
minimal hardware patch, only possible when a new version of
the device is released. The authors of some of these above-
mentioned works boast of not modifying the internal structure
of the processors, although they know very well they are
using a linguistic stratagem: inserting an additional module
in the pipeline is not much different from installing a CFI
verifier between the instruction cache and the core, because an
intrusion is still required in the original design, which means
redesign, even if the processor in itself is the same as before.

IV. CHALLENGES

In light of the above and with respect to the solutions
presented so far in literature for the Control-Flow Integrity
and the their limits highlighted above, from our point of view
it is important to page a solution that:

e aims at protecting microcontroller-based systems even
when they directly execute a firmware stored in the Flash
memory without the support of an Operating System
(bare-metal), being thus independent of the facilities
offered by OS’s, such as multitasking or privileged exe-
cution levels;

o exploits the advantages of a hardware-based defense
applicable without having to wait for the updated version
of the microcontroller to have a protection, making use
for this purpose of a mixture of binary instrumentation
techniques and low-level runtime monitoring based on
external reprogrammable hardware (FPGA);

o sets up an efficient defense mechanism that does not
rely on secrets of any kind (e.g., encryption keys or

secure identifiers) to be hidden by memory protection
mechanisms or similar;

e cares about the strict requirements that these systems
have in terms of resource occupation and execution times,
and therefore aims at minimally impacting the system
configuration and behavior, by properly selecting the
edges to be protected (see Section [VI);

o takes into consideration the problem of hardware in-
terrupts and the fact that the context of the program,
including sensitive elements from the CFI point of view,
can be corrupted with consequent loss of effectiveness of
the solution (interrupt awareness).

V. ASSUMPTIONS

In order for our solution to be effective, it is assumed that:

o the system is provided with a single-core processor that
executes directly from the hardware a single application
(hereinafter, generically referred to as the program) that
does not include parallel computing, even theoretically,
and therefore does not support any context switching;

o the entire code to be executed is already loaded in
memory and cannot be modified in any way, neither from
outside nor from inside;

o the microcontroller has a parallel interface to an external
device mapped in the addressing space of the processor;

« the whole system is closed inside a tamper-proof package,
so that it is not possible to inject faults or disconnect
internal components unless making it unusable.

VI. OUR APPROACH

The proposed solution aims at ensuring that (i) all branches
target a valid location, (ii) the program context be not
corrupted during sudden calls to Interrupt Service Routines
(ISRs). The implemented CFI monitor is a module synthesised
on a FPGA external to the MCU and connected to it via
a standard parallel interface. An instrumented version of the
program runs on the MCU and awakes the monitor by send-
ing sensitive data about branches and context. The monitor
acknowledges these data and interrupts the CPU when they
are not compliant with the expected ones. The CFI monitor
is the only IP present on the reconfigurable hardware device.
The cooperation system between MCU and FPGA is depicted

in Figure

Sensitive Data

Interrupt

Fig. 3: The MCU-FPGA cooperation system for protection.

The program is instrumented so that single OUT/STR in-
structions are added in specific points of the code to commu-
nicate to the monitor two kinds of data:

e labels to uniquely identify a position within the code (for

edge protection);

« values contained in specific registers (for context protec-

tion).

For each sent data, the CFI monitor needs to receive the kind
of the provided data as well, to perform the right operation
on it. For this reason, the interface must have an address bus
whose address will actually be interpreted as an opcode by the
monitor.

The sequel of this Section is organised as follows: we first
introduce a classification of the CFG edges to define those
needing protection. Then, the problem of context corruption
and why context protection is needed are explained. The two
phases of the protection (online and offline) are eventually
presented, followed by some remarks about the architecture
and the actual implementation of the proposed solution.

Classification and Identification of Edges

As already mentioned, the CFG is the set of connections
between the basic blocks (BB) of the program through edges
that correspond to control-flow transfers. Edges can be classi-
fied depending on the transfer instruction that generates them.
They can be first distinguished in forward edges and backward
edges, where the latter are edges connecting a BB to another
which immediately follows (in terms of static position within
the code) a block visited previously. These are typically the
return edges from a routine. “Forward edges” refers to all the
other edges that connect a BB to another elsewhere in the
code. In most cases, these are the calling edges of a routine,
but they can also be jumping edges within a same routine.

We refer as target of an edge to the BB pointed by that edge.
From this definition, we can define direct edges and indirect
edges. Direct edges are edges whose target is expressed as a
label encoded within the instruction itself, while indirect edges
are edges whose target is expressed by the value of a program
data.

An origin tree of an edge target is a tree whose root is
the location (register or memory address) used as argument of
the instruction generating the edge, and which traces all the
locations used to compose the value of the target up to the
origin. Figure [shows a snippet of code in ARM-Assembly-
like language ending with the edge-generating instruction
BX R3 (indirect jump to address stored in R3), with the
relative origin tree for R3. For direct edges, the origin tree
is a trivial tree composed of a root node, only. For indirect
edges, since the target is a program data, the tree can instead
be complex at will. However, if we assume that the entire
code is already available in a single executable, and there
will be no modules linked at runtime, then the construction
of that tree is always possible, no matter the complexity in
constructing it. This represents a key point for the proposed
protection mechanism.

If the origin tree is always entirely reconstructable, then it
is possible to list it all, from the root to the leaves. The leaves
of this tree will be values that cannot further derive from other
locations, i.e., they are either constant values or inputs taken

MOV R%, #1
LSL R&, R8, #27 [oxoz000000] [0x200] [0x40]
MOV R11, 0x200 ~ / /
MOV R4, 0x40
ADD RS, RE, R1l [R5]
3 ——

ADD ?.:-, Rd, RS ==
BX R3 [R3]

(a) (b)

Fig. 4: Snippet of code in ARM-Assembly-like language: (a)
Code (b) The “origin tree” for R3.

from the outside. Assuming that an external input can never
be used to compose a code pointer (because even in the case
of a switch-case statement over an input, there is always a
translation in a readable or predictable constant value, which
then becomes the leaf), or in alternative we impose it as a
design rule, then the set of targets of an edge is always finite
and enumerable, and that set is a strict subset of all possible
code locations. In direct edge case, the cardinality of this set
will be 1, while it will be greater than or equal to 1 in indirect
edge case. It follows (and this is the point) that under these
assumptions it is always possible to list all the destinations
of all the edges of a CFG, and thus, it is always possible to
completely protect the integrity of the control flow.

Introduced all these definitions, it is possible finally to
divide edges into insecure edges and secure edges, i.e., edges
that need protection against control-flow hijacking and edges
that need not. This is mainly important to reduce the number
of code areas to be protected, primary target for embedded
systems with limited potential.

We assume as insecure an edge whose target has an origin
tree that contains at least one node in an area at risk of
corruption, i.e., the data memory (if we consider the code
memory incorruptible). In other words, no matter which are
the leaves of the origin tree of its target, an edge is insecure
when its target is even partially composed with data coming
from data memory. This immediately implies that all direct
edges are secure, but also all indirect edges composed with
values that never exit the code (intended as union of code
memory and processor registers) to go in the data memory.

This approach can be considered as conservative (think of
the case in which a value is saved in memory and retrieved few
instructions later). To prevent the creation of this kind of false
positives, it would be necessary to go further in the analysis of
the code, to investigate about the actual possibility of corrup-
tion between the store and the load instructions. However, this
would mean taking into consideration a memory vulnerability
database, and even looking only for the vulnerabilities known
so far, this would be not trivial, and moreover, the unknown
vulnerabilities would not be taken into account.

In conclusion, if the edge is insecure, then it must be
instrumented so that a CFI monitor, at runtime, is able to
decide whether it is actually pointing to one of its valid targets.
In the case of an insecure forward edge, there is no way to

say, with CFI solutions, which of these points is the right one
according to the execution. In the case of an insecure backward
edge, there is instead a way, because in addition to store all
the possible destinations, it is also possible to store in the
monitor the identifier of the next BB to be executed, so that
the execution is then forced to return there.

Interrupt Service Routines

The assumptions made so far are valid only if one does not
consider that actually the processor, in undefined moments
of the execution, can jump to execute special routines to
serve interrupt requests (Interrupt Service Routines, ISR). As
explained in [45], there is no static analysis that can forecast
in which order or where in the code these routines are called,
so they can never be part of a predefined CFG. Yet, the ISRs
are full-fledged routines, which operate on data and registers
and which preserve the current program status moving it
into memory. The result is that the origin tree that can be
constructed from a static analysis as we have seen so far
become invalid.

To preserve what has been assumed up to now, it must be
therefore ensured that the execution context when entering into
an ISR will be equal to the one when resuming the main pro-
gram. To achieve this, an additional specific instrumentation is
needed, based on the validation of the registers’ content, with
a double check before and after the execution of the service
routine.

Protection Mechanism

As any other, our CFI solution resorts to an offline phase
and an online phase as well.

In the offline phase, the firmware to be protected is first
compiled, then a static analysis identifies different categories
of critical points in the Assembly code. Critical points are
locations within the code that require the monitor intervention
for control-flow verification in the online phase. In correspon-
dence of such points, some data must therefore be sent to the
FPGA, i.e., a write instruction must be inserted. For each BB
that contains a critical point, a unique identifier is produced
and inserted into the executable as a constant. The inserted
write will therefore send the identifier of the BB, using as
address a code to instruct the monitor. For edge protection,
seven categories of critical points are identified:

1) Forward insecure edges with single target: the ID of the
source BB is sent to the monitor before the transfer, and
the unique ID of the target BB is sent after the transfer.
Internally, the monitor combines the two IDs, and if the
edge is valid, the execution can proceed, otherwise the
CPU activity is immediately interrupted via a security
fault using the interrupt line;

2) Backward insecure edges with single target: same as
above;

3) Forward insecure edges with multiple targets: same as
the case of single target, but here all target locations are
instrumented;

4) Forward secure edge to a routine ending with a back-
ward insecure edge with multiple targets: this transfer is
not to be protected, but the ID of the BB to which the
called routine must return is sent. In the monitor, the ID
is pushed on top of a stack structure;

5) Backward insecure edges with multiple targets: same as
2), but the ID of the target BB must correspond to the
ID sent as described in 4). In this regard, the top of the
stack is popped and compared to the ID of the target. If
a mismatch is found, the violation fault is triggered;

6) Forward insecure edge to a routine ending with a
backward insecure edge with single target: again, as in
4), the return BB ID is sent, but also the ID of the target
BB is sent after the transfer (to verify both caller identity
at return time and validity of destination of the present
call);

7) Forward insecure edge to a routine ending with a
backward insecure edge with multiple targets: same as
above, but here all possible return sites are instrumented;

For context protection, two categories of critical points are
identified:

1) Entry point of an Interrupt Service Routine (ISR): a
given number of consecutive writes are inserted as first
instructions of the ISR, storing the content of registers
which, upon entering an ISR, are automatically pushed
by the processor architecture (e.g., in case of ARM, RO,
R1, R2,R3,R12, LR, PC and the status register xPSR),
plus the registers which are additionally used by that
ISR. Internally, the monitor saves all these values on
top of a dedicated stack structure;

2) Exit point of an Interrupt Service Routine (ISR): before
leaving, the same number of writes performed at the
entry point for the same registers, are performed in
reverse order. The program transfers from the top of
its stack to the monitor, which compares the received
values with the ones on top of its own dedicated stack.
If a mismatch is found, a violation is notified through
the interrupt line.

At the end of the analysis and instrumentation process, the
Assembly source of the firmware is recompiled, to produce
the actual final version of the executable. At this point, two
items are available:

1) the instrumented executable binary;
2) a table containing all the instrumented edges, intended
as a set of ID pairs (source BB, target BB).

The edge table is converted into a memory initialisation file
(.mif) which is then used to produce a read-only memory
(ROM) block to be placed inside the monitor architecture.
The RT-level description of the monitor is synthesised into a
bitstream used to program the FPGA.

Once all the sources are ready, as last step of the offline
phase, the programming part takes place: a secure boot loader
loads the instrumented version of the firmware and programs
the FPGA, correctly setting the parallel interface in order to
allow the runtime interaction. The online phase now starts,

- :
' ’ %
Code Analy7er\
& Instrumenter

Source
Assembly - i -
COde ' '
Table of
Edges

'
/nstmmentex

Executable File

/’

programs

%ﬁt

/ Boot Loade\

FPGA
bitstream

Fig. 5: The workflow of the analysis and instrumentation process.

with the FPGA acting as a monitor in response to control-
flow information received by the instrumented program.

The workflow of the analysis and instrumentation process
is presented in Figure [5]

Monitor Internal Structure

In summary, the monitor relies on three different data
structures:

e an edge table which encodes the information about all

consented control-flow transfers, as pairs of source BB
ID and target BB ID;

o a secure ID stack, where it pushes the identifiers received
to protect backward insecure edges with multiple desti-
nations;

e a secure register stack, where it pushes the context of
the program upon entering an ISR and checks whether
this has remained the same or has been corrupted upon
exiting the ISR.

A central control and check unit decodes the commands
coming from the MCU to generate consequent reads and writes
on these three storage blocks, as well as it verifies, through
a set of comparators, that the data received are the expected
ones. As an output, the unit controls the interrupt line, which
notifies the MCU that an attempt to redirect the control flow
is in progress.

The unit also contains a timer, crucial for security. In fact,
when protecting an edge, a very stringent timeout must be
triggered as soon as the source ID is received. To jump to
any gadget in memory, the attacker must pass through one
of the instrumented zones, because there is no trampoline
which remains unprotected after the instrumentation. When it
succeed in tampering with the branch target and jumps to his
payload, there is no instrumentation in that position, unless
the jump is compliant with the CFG (but when an attack
is performed, this is not the case). Therefore, the monitor
assumes an attack when, at timeout, the ID has not yet been
received. With respect to this, the impossibility to access the
FPGA in the normal execution is set as a design rule to
guarantee protection: the FPGA is considered as a private
resource unusable by the program, so any possible read or
write from/to the FPGA is removed during the offline phase,
in such a way that no accesses other than those provided by
the protection are consented.

The overall block diagram of the CFI monitor is depicted
in Figure [§

EDGE
TABLE

ID/Register

>

—_—

CONTROL &
CHECK UNIT

SECURE
ID
STACK

Address (Opcode)

Interrupt

A

—_—
SECURE
REGISTER
STACK

Fig. 6: CFI monitor block diagram.

Involved Overhead

As shown, in terms of code equipment, the defense is
implemented simply by performing write instructions into
the external device. Thus, the need to allocate memory to store
CFG information and then protect it is overcome, as well as it
is eliminated the computational overhead necessary for validity
checks. Conceptually, the write instructions required are:

¢ just 1 for each instrumented location for edge protection;

« n for each instrumented location for context protection,

where n is the number of registers pushed by default by
the architecture upon entering an ISR, plus the registers
pushed because used by the routine.
The term conceptually is here a keyword, because to reach
exactly 1 and n write in each case, the architecture has to
support specific features. In particular, additional machine in-
structions are needed when (i) the ISA does not support writing

immediate values to immediate addresses, (ii) mismatches are
present in the width of the involved buses.

Concerning the hardware part of the defense, the overhead
can be evaluated in terms of the amount of occupied area on
the reprogrammable device. The proposed solution requires
the CFI monitor be the only module in the FPGA. Required
resources are mostly memory resources, for the edge ROM
and the two stacks for IDs and registers. These blocks must
be properly dimensioned to accommodate all the edges and
the maximum amount of forecasted stackable IDs and regis-
ters. The additional logic, including the state machine, some
comparator and some registers for intermediate data storage,
occupies a marginal area, as shown in next Section.

In terms of timing, the FPGA computation needs to be
completed in the shortest time possible, in order to warn the
microcontroller as soon as possible of the attack. To achieve
this, an intelligent encoding for the consented edges should be
adopted, which allows for example to access the table with an
O(1) complexity (implementing it as a hash table) after a fast
and lightweigth combination of source and target IDs.

Trading off Security and Complexity

The features which may limit the feasibility of our solution
are:

1) a too large overhead in terms of added instructions, so
that it is no longer possible to meet some real-time
constraints;

2) too much latency between the write of the sensitive
data and the attack detection, so that the attacker can
jump to dangerous code and perform destructive actions
in that time window.

Both problems can be faced by trading off security and
performances. In particular, the former problem can be tackled
by the system designer, who could resort to a “partial”
protection: insecure edges belonging to paths proven to be
“critical” from the performance point of view could be left
“unprotected”. This could be justified with a deeper analysis
of code vulnerabilities or simply by assuming the risk of such
a choice.

To address the latter problem, the designer should identify
the code sections that, within the response time window of
the monitor, may cause irreparable damage to the system
functioning. These depend not only on the code, but also on
the time the adopted architecture takes for executing it. If these
dangerous sections are found, either the code is rewritten, so
that it become harmless, or the frequency at which MCUs and
FPGAs operate should be properly tuned, so that the monitor
is faster than an attacker.

VII. EXPERIMENTAL RESULTS

In this Section, some preliminary experimental results
obtained from example code analysis are presented'.
![Note for the reviewer: We are currently gathering additional experimental
result on these applications: https://www.x41-dsec.de/lab/advisories/x41-
2018-003-pam_pkcs11/, https://www.x41-dsec.de/lab/advisories/x41-2018-
004-libykneomgr/, https://www.x41-dsec.de/lab/advisories/x41-2018-002-

OpenSC/. Experimental results will be available for the camera ready version
of the paper, if accepted.]

The SEcube™ Open Security Platform

The proposed solution has been implemented and tested on
the SEcube™ platform [5]], an open security-oriented platform
produced by Blu5 Group® The platform is implemented as a
3D SiP (System-in-Package) integrating three components:

e A STM32F4 microcontroller by STMicroelectronics™ ;
o A MachX02 FPGA by Lattice Semiconductor™ ;
o An EALS5+ certified Smart Card;

The device has been chosen because it offers important
hardware security capabilities, such as a closed and protected
physical chip which prevents the common physical attacks [32]
[12]].

Example Application

In order to test the proposed solution, a simple vulnerable
application has been developed on the SEcube™ platform. The
application consists in a program that responds to commands
received through the UART serial interface. The intentionally-
inserted vulnerability is presented in Figure

volid receive_command ()
char in_cmd[4];
uintg8_t in;
count = 0;
while (in != "\n’) {
if (HAL_UART_Receive_IT(...) ...) {
in_cmd([count] = in;
count++;
}
}
L'etLlI'I'l;

}

Fig. 7: The vulnerable function present in our test application.

Proper checks on the input length are missing, so it is
possible to overrun the in_cmd[] buffer corrupting the
adjiacent content of the stack, included the return address. The
result is that any address in code memory is reachable when
the return is executed. After the code instrumentation and
the implementation on the FPGA of the CFI monitor described
above, it was no longer possible to redirect the execution
stream. Even though the MachX02 device present on the chip
is composed of 7000 4-bit Look-Up Tables (LUT), we were
able to implement a version of the monitor with 1024 entries
for each of the two stacks and 8192 entries for the ROM table
(1 entry per edge).

Code Instrumentation

Critical points identification (see Section [VI) of both edges
and context revealed the presence of:

« Backward insecure edges with single target;

o Forward secure edges to a routine ending with a backward
insecure edge with multiple targets;
o Backward insecure edges with multiple targets.

The physical implementation of the SEcube™ platform and
the STM32F4 architecture required increasing the number
of machine instructions for each write. As an example,
the external parallel interface has a 16-bit data bus, so two
accesses are required to send 32-bit values. In addition, the
STR operation does not support an immediate address, so this
must be first copied into a register.

In Table [, some data obtained by our test implementation
are reported.

TABLE I: Experimental Preliminary Results

Assembly instructions of non-instrumented | 4123
code
Control-flow transfer instructions 525

Backward insecure edges with single target | 19
Backward insecure edges with multiple tar- | 38

gets

Protected edges 57

Instrumented ISR 2

Instructions added for edge protection 587

Instructions added for context protection 156

Assembly instructions of instrumented code | 4866

Percentage of code overhead 15.2%

Total number of FPGA LUTs 6864

Occupied LUTs 185 (3% of total)
Total amount of FPGA Memory 240Kb

Occupied FPGA Memory 165Kb (69% of total)

VIII. CONCLUSIONS

In this paper, we presented a solution to guarantee the
Control-Flow Integrity (CFI) of firmware running on bare-
metal microcontrollers, which constitute a relevant part in the
embedded domain. The work was mainly aimed at mitigating
the drawbacks present in the previous state-of-the-art solutions
(OS-based, purely software-based, hardware-based). Using a
mixture of binary instrumentation and hardware-based super-
vision, the solution entrusts the binary enforcement with the
sole task of informing the monitor about the status of the
CFG through simple additional write instructions at critical
points, and the hardware monitor with the conservation of the
information about the CFG and the part of computation for the
validation, thus obtaining advantages in terms of both isolation
and performance. In addition, the monitor is implemented
on a reconfigurable hardware device connected externally via
a standard parallel interface. This frees the solution from
constraints on specific components and from the need to
modify the internal structure of the microcontroller to support
the defense. The only constraint is the presence of a parallel
configurable interface to the outside, but it is highly unlikely
to find microcontrollers not supporting it.

Furthermore, our solution is applicable to any microcon-
troller system in principle, because the assumptions made in
Section [VI] never descend into the particular of a specific
architecture, except for giving examples. Mutatis mutandis,
this technique can be ported to any platform. Moreover, far

more important, the technique can also be applied to all
those systems that are already in the field (legacy). It is only
required to connect a FPGA to the microcontroller, patch the
firmware with the instrumentation, and enclose the system in
a physically-protected environment.

REFERENCES

[1] CWE-119: Improper Restriction of Operations within the Bounds of a
Memory Buffer. https://cwe.mitre.org/data/definitions/119.html, 2019.
[Online; accessed 28-October-2019].

[2] CWE-190: Integer Overflow or Wraparound. |https://cwe.mitre.org/data/
definitions/190.html, 2019. [Online; accessed 28-October-2019].

[3] CWE-416: Use After Free. https://cwe.mitre.org/data/definitions/416.
html, 2019. [Online; accessed 28-October-2019].

[4] Interactive The Top Programming Languages 2019
- IEEE Spectrum. https://spectrum.ieee.org/static/
interactive-the-top-programming-languages-2019, 2019. [Online;
accessed 28-October-2019].

[5] Multiple reconfigurable silicon in a single package. https://www.secube.
eu, 2019. [Online; accessed 07-November-2019].

[6] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM conference on Computer
and communications security, pages 340-353. ACM, 2005.

[71 M. Alam, D. Roy, S. Bhattacharya, V. Govindan, R.S. Chakraborty, and
D. Mukhopadhyay. Smashclean: A hardware level mitigation to stack
smashing attacks in openrisc. In 2016 ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design (MEMOCODE),
pages 1-4. IEEE, 2016.

[8] Arm. TrustZone - Arm Developer. https://developer.arm.com/
ip-products/security-ip/trustzone, ~ [Online; accessed 13-November-
2019].

[9] S. Bhatkar, D. DuVarney C, and R. Sekar. Address obfuscation: An
efficient approach to combat a broad range of memory error exploits.
In USENIX Security Symposium, volume 12, pages 291-301, 2003.

[10] T. Bletsch, X. Jiang, and V. Freeh. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer
Security Applications Conference, pages 353-362. ACM, 2011.

[11] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the
6th ACM Symposium on Information, Computer and Communications
Security, pages 30—40. ACM, 2011.

[12] M. Bollo, A. Carelli, S. Di Carlo, and P. Prinetto. Side-channel analysis
of secube™ platform. In 2017 IEEE East-West Design Test Symposium
(EWDTS), pages 1-5, Sep. 2017.

[13] C. Bresch, D. Hély, A. Papadimitriou, A. Michelet-Gignoux, L. Amato,
and T. Meyer. Stack redundancy to thwart return oriented programming
in embedded systems. [EEE Embedded Systems Letters, 10(3):87-90,
Sep. 2018.

[14] C. Bresch, A. Michelet, L. Amato, T. Meyer, and D. Hely. A red team
blue team approach towards a secure processor design with hardware
shadow stack. In 2017 IEEE 2nd International Verification and Security
Workshop (IVSW), pages 57-62, July 2017.

[15] E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good
instructions go bad: Generalizing return-oriented programming to risc.
In Proceedings of the 15th ACM conference on Computer and commu-
nications security, pages 27-38. ACM, 2008.

[16] A. Chaudhari and J. A. Abraham. Effective control flow integrity checks
for intrusion detection. In 2018 IEEE 24th International Symposium on
On-Line Testing And Robust System Design (IOLTS), pages 1-6, July
2018.

[17] S. Checkoway, L. Davi, A. Dmitrienko, A.R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Pro-
ceedings of the 17th ACM conference on Computer and communications
security, pages 559-572. ACM, 2010.

[18] S. Checkoway, A. J. Feldman, B. Kantor, J.A. Halderman, E. W. Felten,
and H. Shacham. Can dres provide long-lasting security? the case of
return-oriented programming and the avc advantage. EVI/WOTE, 2009,
2009.

[19] L. Chen, J. Jiang, and D. Zhang. Code reuse prevention through
control flow lazily check. In 2012 IEEE 18th Pacific Rim International
Symposium on Dependable Computing, pages 51-60, Nov 2012.

https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/190.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2019
https://www.secube.eu
https://www.secube.eu
https://developer.arm.com/ip-products/security-ip/trustzone
https://developer.arm.com/ip-products/security-ip/trustzone

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie. Drop: Detecting
return-oriented programming malicious code. In A. Prakash and 1. Sen
Gupta, editors, Information Systems Security, pages 163—177, Berlin,
Heidelberg, 2009. Springer Berlin Heidelberg.

P. Chen, X. Xing, B. Mao, L. Xie, X. Shen, and X. Yin. Automatic
construction of jump-oriented programming shellcode (on the x86). In
Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, pages 20-29. ACM, 2011.

S. Chen, J. Xu, N. Nakka, Z. Kalbarczyk, and R. K. Iyer. Defeating
memory corruption attacks via pointer taintedness detection. In 2005 In-
ternational Conference on Dependable Systems and Networks (DSN’05),
pages 378-387, June 2005.

Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. H. Deng. Ropecker: A
generic and practical approach for defending against rop attack. 2014.
N. Christoulakis, G. Christou, E. Athanasopoulos, and S. Ioannidis. Hcfi:
Hardware-enforced control-flow integrity. In Proceedings of the Sixth
ACM Conference on Data and Application Security and Privacy, pages
38-49. ACM, 2016.

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, , and H. Hinton. Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks. 98:5-5, 01 1998.
J. Danger, A. Facon, S. Guilley, K. Heydemann, U. Kiihne, A. Si
Merabet, and M. Timbert. Ccfi-cache: A transparent and flexible
hardware protection for code and control-flow integrity. In 2018 21st
Euromicro Conference on Digital System Design (DSD), pages 529-536,
Aug 2018.

L. Davi, A. Dmitrienko, M. Egele, T. Fischer, T. Holz, R. Hund,
S. Niirnberger, and A.R. Sadeghi. Mocfi: A framework to mitigate
control-flow attacks on smartphones. In NDSS, volume 26, pages 27-40,
2012.

L. Davi, M. Hanreich, D. Paul, A.R. Sadeghi, P. Koeberl, D. Sullivan,
O. Arias, and Y. Jin. Hafix: hardware-assisted flow integrity extension.
In Proceedings of the 52nd Annual Design Automation Conference,
page 74. ACM, 2015.

A. De, A. Basu, S. Ghosh, and T. Jaeger. Fixer: Flow integrity extensions
for embedded risc-v. In 2019 Design, Automation Test in Europe
Conference Exhibition (DATE), pages 348-353, March 2019.

D. C. D’Elia, E. Coppa, S. Nicchi, F. Palmaro, and L. Cavallaro.
Sok: Using dynamic binary instrumentation for security (and how you
may get caught red handed). In Proceedings of the 2019 ACM Asia
Conference on Computer and Communications Security, pages 15-27.
ACM, 2019.

G. Dessouky, S. Zeitouni, T. Nyman, A. Paverd, L. Davi, P. Koeberl,
N. Asokan, and A. Sadeghi. Lo-fat: Low-overhead control flow attes-
tation in hardware. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1-6, June 2017.

G. A. Farulla, A. J. Pane, P. Prinetto, and A. Varriale. An object-oriented
open software architecture for security applications. In 2017 IEEE East-
West Design Test Symposium (EWDTS), pages 1-6, Sep. 2017.

A. Francillon and C. Castelluccia. Code injection attacks on harvard-
architecture devices. In Proceedings of the 15th ACM conference on
Computer and communications security, pages 15-26. ACM, 2008.

A. Francillon, D. Perito, and Claude C. Castelluccia. Defending
embedded systems against control flow attacks. In Proceedings of the

first ACM workshop on Secure execution of untrusted code, pages 19-26.

ACM, 2009.

B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas. Silicon physical
random functions. In Proceedings of the 9th ACM conference on
Computer and communications security, pages 148—160. ACM, 2002.
Y. Guo, L. Chen, and G. Shi. Function-oriented programming: A new
class of code reuse attack in c applications. In 20/8 IEEE Conference
on Communications and Network Security (CNS), pages 1-9, May 2018.
Z. Guo, R. Bhakta, and I. G. Harris. Control-flow checking for
intrusion detection via a real-time debug interface. In 2014 International
Conference on Smart Computing Workshops, pages 87-92, Nov 2014.
Z. Huang, T. Zheng, Y. Shi, and A. Li. A dynamic detection method
against rop and jop. In 2012 International Conference on Systems and
Informatics (ICSAI2012), pages 1072—-1077, May 2012.

Z.]. Huang, T. Zheng, and J. Liu. A dynamic detective method against
rop attack on arm platform. In 2012 Second International Workshop
on Software Engineering for Embedded Systems (SEES), pages 51-57,
June 2012.

T. Kornau et al. Return oriented programming for the ARM architecture.
PhD thesis, Master’s thesis, Ruhr-Universitit Bochum, 2010.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

K. S. Kumar and D. Malathi. A novel method to find time complexity
of an algorithm by using control flow graph. In 2017 International Con-
ference on Technical Advancements in Computers and Communications
(ICTACC), pages 66—68, April 2017.

Y. Lee and G. Lee. Detecting code reuse attacks with branch prediction.
Computer, 51(4):40-47, April 2018.

Y. Lee and G. Lee. Hw-cdi: Hard-wired control data integrity. /EEE
Access, 7:10811-10822, 2019.

Y. Li, Z. Dai, and J. Li. A control flow integrity checking technique
based on hardware support. In 2018 IEEE 3rd Advanced Information
Technology, Electronic and Automation Control Conference (IAEAC),
pages 2617-2621, Oct 2018.

N. Maunero, P. Prinetto, and G. Roascio. Cfi: Control flow integrity
or control flow interruption? In 2019 IEEE East-West Design Test
Symposium (EWDTS), pages 1-6, Sep. 2019.

T. Nyman, J.E. Ekberg, L. Davi, and N. Asokan. Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers.
In International Symposium on Research in Attacks, Intrusions, and
Defenses, pages 259-284. Springer, 2017.

A. One. Smashing the stack for fun and profit.
7(49):14-16, 1996.

V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent rop
exploit mitigation using indirect branch tracing. In Presented as part
of the 22nd USENIX Security Symposium (USENIX Security 13), pages
447-462, 2013.

P. Qiu, Y. Lyu, J. Zhang, D. Wang, and G. Qu. Control flow integrity
based on lightweight encryption architecture. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(7):1358—
1369, July 2018.

R. Roemer, E. Buchanan, H. Shacham, and S. Savage. Return-oriented
programming: Systems, languages, and applications. ACM Transactions
on Information and System Security (TISSEC), 15(1):2, 2012.

N. Roessler and A. DeHon. Protecting the stack with metadata policies
and tagged hardware. In 2018 IEEE Symposium on Security and Privacy
(SP), pages 478-495, May 2018.

AliAkbar Sadeghi, Salman Niksefat, and Maryam Rostamipour. Pure-
call oriented programming (pcop): chaining the gadgets using call
instructions. Journal of Computer Virology and Hacking Techniques,
14(2):139-156, May 2018.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A. Sadeghi, and T. Holz.
Counterfeit object-oriented programming: On the difficulty of preventing
code reuse attacks in c++ applications. In 2015 IEEE Symposium on
Security and Privacy, pages 745-762, May 2015.

H. Shacham et al. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM conference on
Computer and communications security, pages 552-561. New York,,
2007.

Y. Shi and G. Lee. Augmenting branch predictor to secure program
execution. In 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07), pages 10-19, June 2007.
D. Sullivan, O. Arias, L. Davi, P. Larsen, A. Sadeghi, and Y. Jin.
Strategy without tactics: Policy-agnostic hardware-enhanced control-
flow integrity. In 2016 53nd ACM/EDAC/IEEE Design Automation
Conference (DAC), pages 1-6, June 2016.

Microsoft Support. A detailed description of the Data Execution
Prevention (DEP). |https://support.microsott.com/en-us/help/875352/
a-detailed-description-of-the-data-execution-prevention-dep- feature-in,
[Online; accessed 28-October-2019].

PaX Team. PaX Non-Executable Pages Design and Implementation.
https://pax.grsecurity.net/docs/noexec.txt, 2003. [Online; accessed 28-
October-2019].

M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning. On
the expressiveness of return-into-libc attacks. In International Workshop
on Recent Advances in Intrusion Detection, pages 121-141. Springer,
2011.

W. Wang, M. Liu, P. Du, Z. Zhao, Y. Tian, Q. Hao, and X. Wang.
An architectural-enhanced secure embedded system with a novel hybrid
search scheme. In 2017 International Conference on Software Security
and Assurance (ICSSA), pages 116-120, July 2017.

Wenjian He, S. Das, W. Zhang, and Y. Liu. No-jump-into-basic-block:
Enforce basic block cfi on the fly for real-world binaries. In 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pages 1-6,
June 2017.

Phrack magazine,

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in
https://pax.grsecurity.net/docs/noexec.txt

[62]

[63]

Y. Xia, Y. Liu, H. Chen, and B. Zang. Cfimon: Detecting violation
of control flow integrity using performance counters. In IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN
2012), pages 1-12, June 2012.

Intel Software Developer Zone. Intel® 64 and IA-32 Ar-
chitectures Software Developer’s Manual, Volume 1: Basic Ar-
chitecture. |https://software.intel.com/sites/default/files/managed/a4/60/
253665-sdm-vol- 1.pdf. [Online; accessed 13-November-2019].

https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf
https://software.intel.com/sites/default/files/managed/a4/60/253665-sdm-vol-1.pdf

	Introduction
	Background
	Related Work
	Challenges
	Assumptions
	Our Approach
	Experimental Results
	Conclusions
	References

