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ABSTRACT

The User Authorization Query (UAQ) Problem is key in systems
offering permission level user-system interaction, where the system
automatically determines the roles that need to be activated in order
to enable the requested permissions. Finding a solution to the prob-
lem amounts to determining an optimum set of roles to activate in a
given session in order to obtain some permissions while satisfying
a collection of authorization constraints, most notably Dynamic
Mutually-Exclusive Roles (DMER) constraints. Even if the UAQ
Problem is NP-hard, a number of techniques to solve the UAQ prob-
lem have been put forward along with encouraging experimental
results based on different sets of synthetic benchmarks. We propose
a methodology for designing parametric benchmarks for the UAQ
problem and introduce and make publicly available a novel suite of
parametric benchmarks that allows for the systematic assessment
of UAQ solvers over a number of relevant dimensions. By running
three prominent UAQ solvers against our benchmarks we provide a
comprehensive and comparative analysis of unprecedented breadth
from which it can be concluded that currently available benchmarks
are not adequate to the task and that the reduction to PMaxSAT is
currently the most effective approach to tackling the UAQ problem.

1 INTRODUCTION

The User Authorization Query (UAQ) Problem for Role-Based Ac-
cess Control (RBAC) amounts to determining an optimum set of
roles to activate in a given session in order to obtain some permis-
sions while satisfying a collection of authorization constraints, most
notably Dynamic Mutually-Exclusive Roles (DMER) constraints.
The UAQ problem is key in systems offering permission level user-
system interaction (where the system automatically determines
the roles that need to be activated in order to enable the requested
permissions), as opposed to role level interaction (where it is the
user who explicitly determines and tells the system which roles
must be activated).

The requested permissions come in two sets: a lower bound Py,
and an upper bound P,; such that P;;, € P,;, € P, where P is
the complete set of permissions. The permissions in Py, are those
that must be granted, whereas those in P, \ Pj; are additional
permissions that can be granted. It is then possible to either min-
imize or maximize the number of permissions in P, \ Py}, to be
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granted depending on which objective (safety or availability, re-
spectively) needs to be prioritized. If safety (availability) is chosen,
then the number of permissions from P,,; \ P;; needs to be mini-
mized (maximized, resp.). Notice that a certain degree of safety is
achieved even if availability is preferred over safety, since no per-
mission in P\ P,,;, can be granted. DMER constraints are of the form
DMER({ri, ...,rm},t). They constrain activation of roles by requir-
ing that no user can activate ¢ or more roles in {ry,r2,...,rm}.
Although the UAQ Problem is NP-hard [4, 6], a number of tech-
niques to solve the UAQ problem have been put forward along with
encouraging experimental results. These approaches can be broadly
classified in two classes: search-based techniques [13, 18], whereby
the problem is solved by systematically exploring a suitably defined
search space, and SAT-based techniques [2, 12, 13, 18], i.e. techniques
that leverage an encoding of the problem into either (i) a sequence
of propositional satisfiability problems (SAT) [12, 13, 18] or (ii) a
partial maximum propositional satisfiability problem (PMaxSAT) [2,
18] and then use SAT solvers and PMaxSAT solvers respectively as
workhorses to find a solution to the problem (if any).SAT-based ap-
proaches leverages the fast paced advancements achieved by lively
and dedicated research communities that organize competitions!
and evaluations? of state-of-the-art solvers on a yearly basis.
Most of the techniques proposed in the literature have been
experimentally evaluated by running them against different bench-
mark problems. These benchmarks are usually parametric in some
relevant dimension of the problem (e.g. number of roles, number of
DMER constraints, number of requested permissions) and aim at
evaluating the scalability of the proposed techniques along them.
The current state of affairs is nevertheless unsatisfactory for a
number of reasons. The available benchmarks do not cover (and
thus do not test the solvers against) all the relevant aspects of the
problem. For instance, the problems used in [13] do not consider
the case where the number of roles to be activated is maximized
(i.e. obj=max) and therefore do not allow the evaluation of the re-
spective UAQ instances. Furthermore, solvers are often evaluated
against problems proposed by the same authors and this does not
permit to assess the relative merits of the proposed techniques.
By leveraging the asymptotic complexity analysis of the solving
procedures provided in [13], in this paper we propose a method-
ology for designing parametric benchmarks for the UAQ problem.
As we will see, the methodology leads to benchmarks capable to (i)
stress test solvers along dimensions of the problem for which no
polynomial-time technique is known but also (ii) to check their ef-
fectiveness, by determining whether they efficiently solve problems
that are known to be solvable in polynomial time.
By using our methodology we introduce and make publicly avail-
able a novel suite of parametric benchmarks that allows for the
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systematic assessment of UAQ solvers over a number of relevant
dimensions. These include problems for which no polynomial-time
algorithm is known as well as problems for which polynomial-time
algorithms do exist. Guided by the asymptotic complexity analysis
results given [13] we indicate, for each benchmark, its purpose and
the expected behavior of solvers. The suite consists of 27 parametric
benchmarks grouped in 13 families: 11 benchmarks (from 7 families)
have the safety objective and 16 (from 6 families) have the avail-
ability objective. For each benchmark and each considered value of
the parameter the suite includes 10 different problem instances.

We have used the new suite of benchmark problems as well as
the benchmarks introduced in [13] to experimentally evaluate three
solvers: 2D-Opt-Search [13] a search-based solver, 2D-Opt-CNF [13]
that combines the reduction of the UAQ Decision Problem to SAT, a
state-of-the-art SAT solver and a binary search, and UAQ-Solve [2],
a SAT-based solver that implements a reduction of the UAQ Prob-
lem to PMaxSAT and uses any state-of-the-art PMaxSAT solver to
tackle the problem. The experiments provide a comprehensive and
comparative analysis of unprecedented breadth from which it is
possible to draw a number observations:

e 2D-Opt-CNF and UAQ-Solve quickly solve all benchmark
problems taken from [13]. This result indicates that this suite
of benchmarks does not represent adequately the complexity
of the problem and it is therefore of limited use to assess the
effectiveness of the solvers.

o 2D-Opt-CNF and 2D-Opt-Search scale poorly even for (most)
benchmarks in our suite for which polynomial-time proce-
dures exist. This results is in stark contrast with the experi-
mental results given in [13] from which one could be led to
believe that these two solvers scale well in practice.

e For most benchmarks (2 out of 27), the behavior of UAQ-
Solve meets the expectations that can be drawn from the
known asymptotic complexity analysis results; this results
is a strong indication of the validity of the methodology we
propose in this paper, but it also indicates that there is still
room for further investigation.

e UAQ-Solve outperforms both 2D-Opt-Search and 2D-Opt-
CNF in the vast majority of the benchmark considered. This
is not surprising since PMaxSAT solver implements sophis-
ticated search algorithms specifically tailored to tackle op-
timization problems; in contrast, 2D-Opt-CNF tackles the
optimization problem through a fairly naive binary search
strategy and 2D-Opt-Search simply enumerates the solutions
in order to find an optimum. Yet, prior to our experimental
analysis, there was little evidence (if any) to support this
conclusion.

Structure of the paper. In the next section we introduce the UAQ
problem. In Section 3 we provide an overview of the techniques for
solving the problem. In Section 4 we present our methodology for
the generation of parametric benchmark problems and introduce
the new suite of benchmarks. In Section 5 we present and discuss
the experimental results. In Section 6 we discuss the related work
and in Section 7 we conclude the paper with some final remarks.
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2 THE UAQ PROBLEM

An RBAC policy is a tuple RP = (U, R, P, UA, PA, >, C), where U is
a set of users, R a set of roles, and P a set of permissions; users are
associated to roles by the user-assignment relation UA C U X R
and roles are associated to permissions by permission-assignment
relation PA C R X P; > is a partial order on R, modeling the hi-
erarchy between roles, i.e. r; > r; means that ri is more senior
than (has all permissions of) ry for ri,r2 € R; and C is a set of
dynamic mutually exclusive role (DMER) constraints of the form
DMER({r1,...,rm}, t), with t < m, stating that no user can simul-
taneously activate ¢ or more roles in the set {r1,...,rm}.

A user u is a member of role r when (u, r) € UA. By R,, we denote
the set of roles assigned to user u, i.e. R, = {r € R: (u,r) € UA}.
A user u has permission p if there exists a role r € R such that
(p,r) € PAand u is a member of r. All the RBAC policies considered
in this paper are assumed to be finite, i.e. U, R, and P have finite
cardinality (and thus UA, PA, and > have finite cardinality too). We
treat permissions as if they are opaque (i.e. we do not consider
the internal structure of permissions) and mutually independent
(i.e. the possession of one or more permissions does not imply the
possession of another permission). Let p € P, we define R, = {r €
R : (r,p) € PA} and Rpr = Upeps Rp for any P’ C P. Similarly,
let r € R, then we define P, = {r € R : (r,p) € PA} and Pp =
Urer Pr for any R’ C R. Let o C R, then we say that o satisfies
DMER({r1,...,rm},n)iff {r1,...,tm} No| < n and that o satisfies
C iff p satisfies ¢ for all ¢ € C.

Let S be a set of sessions and user : S — U a function that
associates each session s € S with the corresponding user.

A User Authorization Query (UAQ) is a tuple q = (s, Pyp, Py,p, 0bj),
where s € S, P;;, € Pyp, C P, and obj € {any, min, max}.

Definition 2.1 (UAQ Problem). The UAQ Problem for q = (s, Py,
P, p,0bj) in RP is the problem of determining a set of roles p C
Ryser(s) such that (i) o satisfies C, (ii) P, € Pp C Pyp and (iii) any
other 0" C Rygep(s) that satisfies C and Py, € Py C Py, is such that

e P, C Py, if obj = min;
® Py C Py, if obj = max.

Definition 2.2 (UAQ Decision Problem). Let w = (s, Prp, Pyp, kp)
where kp € {<, 2} x[0,|P, \ Pip|]. The UAQ Decision Problem for
w in RP is the problem of determining a set of roles 0 C Ryg(s)
such that (i) o satisfies C, (ii) P, € P, and
(iii.a) |Pp \ Ppp| < nifkp = (<, n),

(iti.b) |Po \ Ppp| 2 nifkp = (2, n).

3 SOLVING THE UAQ PROBLEM

In this section, we provide a systematic overview of search-based
and SAT-based techniques for solving the UAQ problem. This will
also give insights into the complexity of the problem.

3.1 Search-based Techniques

A naive two-step algorithm that first obtains a set of roles covering
the desired permissions minimally and then checks whether the
set of roles satisfies the constraints is proposed in [20]. However,
the algorithm may not find a combination of roles that satisfies the
constraints since the first step does not take any constraints into
account.
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An alternative approach, discussed again in [20] and improved
in [18], amounts to

Procedure 1

(1) enumerating all possible role activations for the user,

(2) checking (in polynomial time as shown in [13]) whether
the selected roles grant the requested permissions (i.e. fall
between Py, and P,j;), and satisfy the DMER constraints,
and

(3) keeping the best (according to the security objective consid-
ered) solution encountered, if any.

The algorithm is clearly in O(2/Rl). The DPPL-based procedures
proposed in [18] and the DFS-based algorithms proposed in [9] are
optimized versions of this algorithm with additional preprocessing
and pruning steps.

An alternative approach to solving the UAQ problem (adapted
from [13]) is as follows:

Procedure 2

(1) enumerate all sets of roles S, C R, for each p € Py,

(2) check in polynomial time whether S = U,cp,, Sp is such
that Py, C Ps C P,j and S satisfies the DMER constraints,
and

(3) keep the best (according to the security objective considered)
solution encountered, if any.

The above algorithm is in O(2RP|P“b |), where Rp = maxpep |Rpl.
To see this it suffices to observe that for each p € P, there are
at most 2/Rr| subsets Sp of Ry and thus there are in total at most
2Rr|Pus| candidate solutions to consider. When it is sufficient to

activate “at most one role per permission”, [13] shows that the
— | P,
above procedure is in O(R p‘ ub ‘) and hence is also fixed-parameter

polynomial (FPP) in |P,,;|, i.e. it is polynomial-time if |P,;| < ¢ for
some constant c.

If the objective is min or any, then it is sufficient to activate at
most one role per permission and this leads to the following, more
efficient version of the algorithm:

Procedure 3

(1) enumerate all roles r, € Ry, for each p € Pjp,

(2) check in polynomial time whether S = {r, € Ry : p € P}
is such that Ps C P,,;, and S satisfies the DMER constraints,
and

(3) keep the best (according to the security objective considered)
solution encountered, if any.

If the objective is min or any, it is in fact possible to consider the
activation of individual roles granting the permissions in Pj; and
the algorithm is in O(|§;| P11y [13].

If the optimization objective is max, then the “at most one role
per permission” assumption does not hold and hence the FPP re-
sult cannot be applied in general. To illustrate consider a UAQ
problem with R = {ri,r2,r3}, P = {p1,p2, p3.pa}, PA such that
Pr, = {p1.p3}. Pr, = {p2.pa}. Pry = {p2.p3}. Pip = {p1}, Pup = P
and obj = max. The solution {ry} satisfies the “at most one role per
permission” assumption but it is not optimal. In fact both {ry, r2}
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Table 1: Complexity of solution techniques

Procedure Objective Complexity
1 any, min, max O(2|R|)
2 any, min, max O(2E’|Pub I)
3 any, min O(Rp Pip |)
4 max O(,:}ICli)

and {r1, 2, r3} activate a larger (actually maximal) set of permis-
sions, namely P. An alternative approach to tackling the problem
for the max case is put forward in [13]:

Procedure 4

(1) enumerate all sets of possible role activations R; = R{U---U
Rn U Rfees where R; C rs; and |R;| < t;, for all constraints
DMER(rsi, t;) in Cand i = 1,...,|C|, and Rp C Ris the
set roles that do not occur in the DMER constraints (and can
thus be freely activated),

(2) check in polynomial time whether Pj;, C Pg, € P,;, and R,
satisfies the DMER constraints.

(3) keep the maximum sized |Pg,| solution encountered, if any.

For the sake of simplicity but without loss of generality we assume
that no role in R is assigned permissions which are not contained
in P,;. (It is easy to see that any UAQ problem in which one or
more roles in R are assigned permissions in P, can be turned
into an equisatisfiable UAQ problem that meets our assumption.)
We now note that for each constraint DMER(rs;, t;) in C there are

Z;C:l (Ir]:i‘) subsets R; of rs; such that |R;| < t;. The number of

10 ICl
setsRi U---URy is (Z]tc:l (lr;’ l)) , from which it easily follows

that the enumeration of the set of roles R = Ry U -+ URp U
Rfree grows as 073!, where 75 = maxpupER(rs,t)ec |7s| and

T= maxp MER(rs,¢)ec t- This improves the upper bound O(|R| |C|?)
given in [13].
As shown in [13], the role hierarchy, >, does not contribute to

the computational complexity of the problem.
A summary of the results is given in Table 1.

3.2 SAT-based Techniques

Let RP = (U, R, P, UA, PA, >, C) be an RBAC policy with constraints
and q = (s, P;p, Pyp, 0bj) a UAQ query for RP. Since RP is finite (i.e.
the set U of users, R of roles, and P of permissions are all finite),
the UAQ problem can be tackled by leveraging SAT solvers. This
can be done in a variety of ways.

A first approach [13] amounts to reducing the UAQ Decision
Problem to SAT and solving the optimization problem through
binary search that leverage the SAT solver as an oracle for the
decision problem. The second approach ([2, 17, 18]) eliminates the
need for the binary search by directly encoding UAQ problems into
PMaxSAT.

3.2.1 Reducing the UAQ Decision Problem to SAT. Let w = (s, Py,
Pyp, kp) where kp € {<, 2} X [0, |P,p \ Pjp|]. The reduction of the
UAQ Decision Problem for w in RP to SAT amounts to generating
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a set of clauses Cy}, = Crp U C9, where Crp and C¥ are defined
below. We assume the existence of a propositional variable 7 for
each r € R and a propositional variable p for each p € P.

Cgp is the smallest set of propositional clauses satisfying the
following conditions.

Core RBAC.

(1) for all r € Rif (user(s),r) ¢ UA then —=r € Cgp;
(2) forall p € P and r € R such that (p,r’) € PAwithr > r’,
(=7 Vp) € Crp;
B)forallp € P, (=p Vv V{r :
(p,r") € PA}) € Cgrp.
It is easy to see that the number of clauses above is in O(|R||P|) and
the number of propositional variables in O(|R| + |P|).

exists v’ € Rr > r’,

MER Constraints. For all MER(rs, n) € C, a CNF of the following

formula is in Cgp:
> r<n-1 1)

rers
As shown in [16], inequalities of the form ), cx x < n can be
succinctly encoded into CNF with 7|X| clauses and 2|X| additional
propositional variables. Thus, constraints of the form (1) can be
encoded with a number of variables and clauses in O(|R|).
C" is the smallest set of propositional clauses satisfying the
following conditions.

Query.
e a unit clause p € Cgp for each p € Pjp;
e a unit clause —p € Crp for eachp € P\ Pp;
o A CNF of the following formula in Cgp:

Z P <nifky, =(<,n)
PEPuL\Prp

p2nifky, = (2,n)
PEPLL\P1

It can be shown that any solution to Cp}, corresponds to a solu-
tion of the corresponding UAQ Decision Problem and vice versa.

3.2.2 Reducing the UAQ Problem to PMaxSAT. A PMaxSAT prob-
lem is given by a pair (H, S), where H and S are two finite sets
of clauses, called “hard” and “soft” respectively. A solution to a
PMaxSAT problem (H,S) is any truth-value assignment to the
variables in H and S that satisfies all clauses in H and the maxi-
mum number of clauses in S.

A UAQ Problem for q = (s, Pyp, Pyp, 0bj) can be reduced to a
PMaxSAT problem (H,, 87, where H, is obtained from Cgp
(as defined in Section 3.2.1) by adding

e aunit clause p for each p € Py, and
e a unit clause —p for each p € P\ Pp;
and 87 comprises
e a unit clause —p if 0bj = min
e a unit clause p if obj = max
for each p € Py, \ Pyp. No soft clauses are included if 0obj = any.
It can be shown that any solution to Cp¥, (C{,) corresponds

to a solution of the corresponding UAQ Decision Problem (UAQ
Problem, resp.) and vice versa.
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In can be readily seen that for both reductions the number of
clauses is in O(|R||P|) and the number of propositional variables is
in O(|R| + |P]).

4 BENCHMARKS

Designing benchmarks suitable for the systematic assessment of
UAQ solvers is not easy. A common approach [2, 9, 13, 18] is to
focus on families of problems that are parametric on aspects of the
problem that may contribute to its complexity. All other aspects are
either set to a predefined, constant value or are randomly chosen
in a given interval or according to some criterion. By running a
solver against the instances corresponding to increasing values of
the parameter, it is thus possible to obtain an estimation of how
the solver scales along the dimension represented by the parameter.
Unfortunately, the adequacy of the benchmarks proposed in the
literature is seldom discussed. For instance, as we will see, some
benchmarks have been reported to be solved efficiently by proposed
solvers, e.g., in linear time along some parameter for which no
polynomial-time algorithm is known. When this is the case, it
seems likely that the benchmarks do not represent the complexity
of the problem. (The alternative being that the solver used in the
experiments improves over the known complexity results.)

The sheer number of elements that contribute to the definition
of the UAQ problem complicates the selection of the parameters.
The elements characterizing the RBAC policy include the number
of roles |R|, the number of permissions |P|, the number of DMER
constraints |C| as well as their specific features (e.g. 7s and £). One
may even consider features of the PA relation, such as the maximum
number of roles that contain any given permission (referred as
Rp = maxpep |Rp| in Section 3). The components of the query
also contribute to the complexity of the problem. These include
the security objective (any, min, max), the number of requested
permissions that must be granted, i.e. |Pjp|, and the number of
requested permissions that can be granted, i.e. |P,p].

In previous work (see, e.g., [2, 9, 13, 18]), various benchmark
problems parametric in any of these aspects have been put forward.
To the best of our knowledge, the most extensive collection of
parametric benchmarks so far is presented in [13] and summarized
in Table 2. The benchmarks are parametric in |R|, Rp, |D|, |rs], t,
|P1p|, |Pyp |, and obj. To illustrate, consider the benchmark problems
named “roles” in the table. They are parametric in |R| (with |R|
ranging from 25 to 200), have 500 permissions (|P|) with every
permission being assigned to exactly 3 roles (and thus Rp = 3), and
10 MER constraints (|C|); each MER constraint contains 10 roles
(s) and the value of ¢ is set to 3. The cardinality of Pj;, and P,,;, are
set to 7 and 20 respectively. Only the optimization objective min is
considered.

While the benchmarks in [13] provide a first attempt to pro-
vide a comprehensive evaluation along a number of significant
dimensions, they still suffer from the following shortcomings:

(1) only the optimization objective min is considered, and they
are therefore not suitable for evaluating the performance
of the solvers when different optimization objectives, most
notably max, are considered;

(2) itis not always clear if and how these benchmarks represent
the complexity of the UAQ problem.
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Table 2: Parametric Benchmarks from [13]

Name SAT  |R| [Pl Rp |C]| 75 Pl 1Pl
roles F 25..200 500 3 10 10 3 7 20
d F 100 500 3 10..100 10 3 7 23
rolesPerConstr F 300 1000 3 20 10..100 3 5 30
t F 100 500 3 20 25 2..12 6 10
plb F 100 500 3 10 10 3 111 20— |Ppl
The complexity results introduced in Section 3 can be used to is in O(I/Q; P l) and thus we know that the problem can be

validate and even guide the design of the benchmarks. If a family of
UAQ problems is known to be solvable in polynomial time, then by
running a solver against this family of problems we can check how
the performance of the solver compares with that of the known
algorithms: if the time spent by the solver grows, e.g., exponen-
tially as the size of the problem increases, than the solver is clearly
inefficient against this family of problems. Dually, if a family of
UAQ problems is known to be NP-hard, but the time spent by any
solver has a polynomial growth as the size of the problem increases,
then this means that the family of the problems (i.e. benchmarks)
considered does not represent adequately the complexity of the
problem.

The above methodology can be used to understand and validate
the benchmarks in Table 2. We start by observing that in all prob-
lems except plb, the value of |Py| is fixed. Procedure 3 is therefore
insensitive to the value of the respective parameter (R for roles,
Rp for rpp, etc.) and so should be any reasonably efficient solver
when applied to these problems. All benchmark problems but plb
can thus be used to check whether UAQ solvers are as effective
as Procedure 3 as the value of the respective parameter increases.
Benchmark plb is instead parametric in |Pj;| and we therefore ex-
pect the solving time of Procedure 3 (and of any other solver) to
increase exponentially as |Pj| increases. Notice that Procedure 1
is unlikely to be efficient here, since |R| is set to a fairly large value,
namely 100.

Driven by the above methodology, we propose two new families
of parametric UAQ problems, one with 0bj = min and one with
obj = max. The benchmarks with obj = min are summarized in
Table 3:

e PIb_bigR and PIb_smallR are both parametric in | P;3|. PIb_bigR
can be used to stress test solvers for increasing values of | Py |:
for large values of |R| (here set to 100), the best known algo-
rithm (i.e. Procedure 3) is exponential in |Pj;| and thus we
expect any solver to exhibit the same behavior. PIb_smallR
can instead be used to check the effectiveness of solvers:
Procedure 1 is in O(2 |R|) and thus we know that the problem
can be solved efficiently for sufficiently small values of |R|
(here set to 10).

e R_bigPlb and R_smallPIb are both parametric in |R| and are
dual to Plb_bigR and Plb_smallR respectively. R_bigPlb can
be used to stress test solvers for increasing values of |R|:
for large values of |Pyp| (here set to 100), the best known
algorithm (i.e. Procedure 1) is exponential in |R| and thus we
expect any solver to exhibit the same behavior. R_smallPlb
can be used to check the efficiency of solvers: Procedure 3

solved efficiently for sufficiently small values of |P;| (here
set to 1).

e RPhat_bigPlb, RPhat_medPlb, RPhat_smallPlb are paramet-
ricin ﬁ; and can be used to check the effectiveness of solvers:
Procedure 3 is in O(E; \Pio l) and thus we know that the prob-
lem can be solved efficiently for sufficiently small values of
|P1p| (here set to 12, 4 and 1 respectively). Note that | Py | is
the degree of the polynomial and therefore the time spent
by the solver may differ significantly (for the values of |Pjp|
considered) as R; increases.

e Pub, C, rshat, and that, are parametric in P,, |C|, 7s and
7 respectively. Since these parameters do not contribute to
the asymptotic complexity of any procedure presented in
Section 3.1, these benchmarks can be used to check the ef-
fectiveness of solvers.

Notice that we do not include benchmarks parametric in the “size”
of the role hierarchy since, as already pointed out in Section 3, it
does not contribute to the complexity of the UAQ problem.

The benchmarks with obj = max are summarized in Table 4:

e Pub_bigRCt, Pub_smallR and Pub_smallCt are parametric
in |P,p|. Pub_bigRCt can be used to stress test solvers for
increasing values of |P,|: for large values of |R| and |C[t,
Procedure 2 is to be preferred to Procedure 4. Since Proce-
dure 2 is exponential in |P,;,|, we expect solvers to exhibit
the same behavior. Pub_smallR (Pub_smallCt) can instead
be used to check the efficiency of solvers: Procedure 1 (Pro-

cedure 4, resp.) is in O(2'Rly (O(R; |Clt), resp.) and thus we
know that the problem can be solved efficiently for suffi-
ciently small values of |R| (|Cl%, resp.) (here set to 10, in both
cases).

e RPhat_bigRCt, RPhat_smallR, RPhat_smallCt, parametric in
Rp, are analogous to the previous case.

e C_bigRPub, C_smallR and C_smallRpPub are parametric in
|C|. C_bigRPub can be used to stress test solvers for increas-
ing values of |C|: for large values of |R| and |P,;| Procedure
4 is to be preferred to Procedure 1 and Procedure 2. Since
Procedure 4 is exponential in |C|, we expect solvers to exhibit
the same behavior. C_smallR (C_smallRpPub) can be used
to check the efficiency of solvers: Procedure 1 (Procedure
2, resp.) is in O(2Rly (2RpIPusly, resp.) and thus the prob-
lem can solved efficiently for sufficiently small values of |R|
(Rp|Pyp|, resp.).

o that_bigRPub, that_smallR and that_smallPub, parametric
in 7, are analogous to the previous case.
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Table 3: Benchmark specifications for obj = min

Name |R| [Pyupl |C| rs t  |Pip| TO (sec)
Plb_bigR 200 400 5 0 - - 5..50 600
Plb_smallR 10 400 5 0 - - 5..50 30
R_bigPIb 10..100 400 5 0 - - 100 600
R_smallPlb 10..100 400 5 0 - - 2 30
RPhat_bigPb 200 400 2..12 0 - - 10 600
RPhat_medPIb 200 400 2.12 0 - - 4 600
RPhat_smallPlb 200 400 2.12 0 - 1 600
Pub 200 100..1000 5 50 8 3 10 600
C 200 400 5 10..100 8 3 10 5
rshat 200 400 5 10 5..50 3 10 5
that 200 400 5 40 8 2.8 10 5

Table 4: Benchmark specifications for obj = max

Name IR [Pyl Rp I s T Pl TO(sec)
Pub_bigRCt 200 100..1000 5 50 8 3 10 600
Pub_smallR 10  100..1000 5 50 8 3 10 5
Pub_smallCt 200 100..1000 5 5 8 2 10 5
RPhat_bigRCt 200 400 20..60 50 25 4 4 600
RPhat_smallR 10 400 20..60 50 25 4 4 600
RPhat_smallCt 200 400 20..60 5 25 2 4 600
C_bigRpPub 200 400 5 10..100 8 3 10 600
C_smallR 10 400 5 10..100 8 3 10 5
C_smallRpPub 200 50 5 10..100 8 3 10 5
that_bigRPub 200 400 5 40 8 2.8 10 300
that_smallR 20 400 5 40 8 2.8 10 5
that_smallPub 200 50 5 40 8 2.8 10 5
rshat_bigRCt 200 400 5 10 5..50 3 10 100
rshat_medRCt 200 400 5 3 5..50 3 10 100
rshat_smallRCt 200 400 5 1 5..50 3 10 100
Plb 200 400 5 20 5 2 10..100 5

o rshat_smallCt, rshat_medCt and rshat_bigCt are parametric
in 73. rshat_smallCt can be used to check the effectiveness

of solvers. Procedure 4 is in O(rAslc‘t) and thus the problem
can solved efficiently for sufficiently small values of |C[z.
rshat_medCt and rshat_bigCt can be used to see how the
values of C[t affect the complexity of the problem.

o Plb is parametric in Pyy,. Since this parameter does not con-
tribute to the asymptotic complexity of any procedure pre-
sented in Section 3.1, this benchmarks can be used to check
the effectiveness of solvers.

The benchmarks in Table 3 and in Table 4 are obtained by ran-
domly generating a RBAC policy with the specified number of roles
and permissions (ensuring that each permission is assigned to ex-
actly Rp roles), the specified number of DMER constraints of the
form DMER({r1,...,rm},t) withm =75, t = Tand a query with
with Py, with |Pj| randomly selected permissions and P, = P.
It must be noted any UAQ problem can be readily reduced to an
equivalent UAQ problem by eliminating all permissions in P that

are not in P,,;, and all roles that have assigned those permissions. By
setting P,,;, = P we are thus eliminating the generation of problems
that are de facto equivalent to problems of smaller size.

5 EXPERIMENTAL RESULTS

We used the benchmarks introduced in Section 4 to experimentally
evaluate the performance of the following solvers:

e 2D-Opt-Search [13]: a search-based solver leveraging the
FPP result;

e 2D-Opt-CNF [13]: a SAT-based solver that leverages the re-
duction of the UAQ Decision Problem to SAT, zChaff [1] as
SAT solver a state-of-the-art SAT solver and a two-dimensional
binary search to solve UAQ problems;

e UAQ-Solve [2], a SAT-based solver that employs a reduction
of the UAQ Problem to PMaxSAT and employs any state-
of-the-art PMaxSAT solver to tackle the problem. In the
experiments presented in this paper we used the Loandra
PMaxSAT solver [3].
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Since the first two solvers perform a joint optimization of permis-
sions and roles, i.e. minimizing (or maximizing) the number of roles
and permissions in a solution, and the last solver optimizes only
permissions we disabled the role optimization in those solvers. For
each benchmark problem we generated 10 instances and ran the
solvers against them. All data points in our plots represent the
median value of the time spent by the corresponding solver. The
experiments have been conducted on a PC with 2 64-bit Intel Xeon
CPU X7350 (8 core) @ 2.93GHz and 47 GB RAM running Linux
(Ubuntu 16.04.5 LTS).

For the benchmarks of Table 2 we set the timeout to 600 seconds.
For the benchmarks of Table 3 and Table 4 the timeout is set to the
values indicated in the rightmost column of the tables (TO).

The experimental results obtained by running the solvers against
the benchmarks of Table 2 are shown in Figure 1. The experiments
indicate that UAQ-Solve outperforms both 2D-Opt-Search and 2D-
Opt-Search in most cases. But, most importantly, all problems are
solved by 2D-Opt-Search and UAQ-Solve in a fraction of a second
even for very large values of the parameter. We can thus conclude
that these benchmarks do not represent the complexity of the prob-
lem and they are of limited value for assessing the effectiveness of
UAQ solvers.

The experimental results obtained by running the solvers against
the benchmarks with optimization objective set to min (cf. Table 3)
are shown in Figure 2:

o The time spent by UAQ-Solve to solve Plb_bigR and Plb_smallR
meets the expectations. For PIb_bigR the plot has a clear ex-
ponential growth, whereas for Plb_smallR is grows very
slowly and even (slowly) decreases for P, > 20. The be-
havior of 2D-Opt-CNF on Plb_smallR is similar to that of
UAQ-Solve, but when applied to PIb_bigR it reaches the time-
out even for the smallest value of [Py | (i.e. 5). 2D-Opt-Search
can only solve Plb_smallR and Plb_bigR only for the smallest
value of [Py .

o Similar considerations hold for R_bigR and R_smallR. Notice
that 2D-Opt-Search performs remarkably well for R_smallR
but it reaches the timeout even for the smallest instance of

R_bigR (i.e. 10).

o Theresults for RPhat_bigPlb, RPhat_mediumPlb, RPhat_smallPlb

are of particular interest. As pointed out in Section 3 Pro-

cedure 3 is in O(E;‘Plbl) and if |Pyp| is bounded, then it
can solve the problem in time which grows as a polyno-
mial of degree |Pyp|. It can be noted that UAQ-Solve quickly
solves all problems in RPhat_smallPlb (for which |Pj;| = 1),
while the plot is considerably more steep for RPhat_bigPlb
(for which |Pj;| = 12). This is consistent with the growth
of polynomials of degree 1 and 12 respectively. The plot
for RPhat_mediumPlb (for which |Pj;| = 4) represents a
intermediate situation. The behavior of 2D-Opt-Search on
RPhat_smallPb and RPhat_medPb is similar to that of UAQ-
Solve, but it reaches the timeout for Plb_bigR for a small
value of Rp (i.e. 2).

o The plot for Pub indicates that the time spent by UAQ-Solve
is not insensitive to | P, |. This is however not surprising if
we consider that in our benchmarks P,;, = P and the size
of the encoding is in O(|R||P|) and thus it grows linearly

AsiaCCS ’20, June 01-05, 2020, Taipei, Taiwan

with |P|. Notice also that the time spent by UAQ-Solve is
very small even for very large values of |P,|. 2D-Opt-CNF
reaches the timeout for the smallest value of |Py;| (i.e. 100),
whereas 2D-Opt-Search reaches the timeout even for that
value.

o As expected, UAQ-Solve quickly solves the remaining bench-
marks, namely C, rshat, and that, whereas 2D-Opt-CNF and
2D-Opt-Search reach the timeout even for the smallest values
of the respective parameters.

Figure 3 presents the experimental results obtained by running
UAQ-Solve against the benchmarks with optimization objective
set to max (cf. Table 4). We did not consider 2D-Opt-CNF nor 2D-
Opt-Search since 2D-Opt-CNF appears to be unstable (it crashes
on some instances)x and 2D-Opt-Search (by assuming the “at least
one role per permission”) may lead to sub-optimal results. From
the experimental results we can draw the following observations:

o The time spent by UAQ-Solve to solve Pub_bigRCt, Pub_smallR
and Pub_smallCt are parametric in |P,;| meets the expec-
tations. For Pub_bigRCt the plot has a clear exponential
growth, whereas for Pub_smallR and Pub_smallCt the plots
grow very slowly as |P,;| increases.

e Contrary to expectations the time spent by UAQ-Solve for
RPhat_bigRCt does not increase (it actually decreases) as ﬁ\p
increases. We tried with with considerably larger values of
[R|, |C|, and  to no effect: UAQ-Solve remains unexpectedly
fast. In this case it seems reasonable to conclude that our
problem generation method does not yield instances that are
representative of the complexity of the problem. Given this, it
is not surprising that UAQ-Solve easily solves RPhat_smallR
and RPhat_smallCt too.

o The time spent by UAQ-Solve to solve C_bigRPub, C_smallR
and C_smallRpPub meets the expectations. For C_bigRPub
the plot has a clear exponential growth, whereas for C_smallR
and C_smallRpPub the plots grow very slowly as |C| in-
creases.

e Contrary to expectation UAQ-Solve quickly solves all bench-
marks that_bigRPub, that_smallR and that_smallPub. Again
this could be due to the fact that our problem generation
method fails to produce instances that are representative of
the complexity of the problem

e The plot for rshat_smallCt show that the problems cab be
solved quickly as 75 increases as long as the value of |C[t is
sufficiently small (3 in this case). The plots for rshat_medCt
and rshat_bigCt show the effect of larger values of |C[t which
is consistent with the growth of polynomials of degree 9 and
30 respectively.

o As expected, UAQ-Solve quickly solves the Plb benchmark.

6 RELATED WORK

As UAQ is a central problem in RBAC systems, significant ef-
fort [9, 11, 12, 17] has been put to develop techniques for tackling
it efficiently and to understand its underlying complexity. To our
knowledge, [6] is the first paper that discusses UAQ where authors
show that the complexity of finding minimal set of roles to be ac-
tivated in a session that covers the permissions requested by the
user is NP-complete. While they analyze UAQ in the presence of
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Figure 1: Performance of 2D-Opt-Search, 2D-Opt-CNF and UAQ-Solve on the benchmarks of Table 2

complex role hierarchies, they do not consider the constraint types
(e.g. mutual exclusion of roles) available in RBAC. A natural exten-
sion of this work is presented in [20] where authors present two
algorithms for solving UAQ problem instances. The first algorithm
is a greedy search algorithm that looks for a set of roles covering
the requested permissions while trying to minimize the additional
permissions these roles provide. It is very efficient, but incomplete
since it does not explore the space of all possible solutions. The
second algorithm, aimed at providing completeness, is based on a

simple generate-and-test strategy. It enumerates all subsets of roles
assigned to the user until one is found that provides the needed
permissions and satisfies all constraints. The problem with this
algorithm is the first step may render the algorithm inefficient since
it may need to generate 2Rl solutions in the worst-case.

The more generic form for the UAQ problem where there are
lower (P;3) and upper (P,,;) bound permissions has been first pro-
posed in [18]. The authors proposed two solutions for this problem.
One is a variant of backtracking based search algorithm used in
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Figure 3: Performance of 2D-Opt-Search, 2D-Opt-CNF and UAQ-Solve on the benchmarks of Table 4

SAT solving, and the other is based on reducing the UAQ problem
to MaxSAT. In general, the second solution performs better than the
first one when obj = max or obj = min. The first approach is more
efficient when an exact matching between the requested permis-
sions and the available roles is sought. However, both approaches
show very poor performance (as elaborately shown in [12]) when
the number of roles increases.

The formal complexity analysis of different UAQ problem classes
is also a point of strong scientific interest. For instance, [5] shows
the complexities of UAQ problem by reducing it to a special case of
set covering problem namely, container optimization. The reduction
shows that both cases (0bj = max and obj = min) are polynomial
time Turing equivalents of container optimization problem, and
are thus NP-hard. However, the paper does not consider UAQ prob-
lems with dynamic constraints as we do in this paper. Moreover,
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these works did not either conduct any experimental analysis or
employed extremely simple RBAC instances to evaluate their pro-
posals. A general framework for the UAQ problem, that includes
the optimization of number of roles as well as of number of permis-
sions in proposed in [9] along with a comprehensive computational
complexity analysis of various sub-cases and search-based solving
techniques. However the proposed framework does not include
DMER constraints which are one of the distinguishing feature of
the UAQ problem considered in our work.

Mousavi et al. [13] show that there are two versions of the UAQ
problem with constraints: the decision problem and the optimiza-
tion problem. The authors also provide an extensive experimental
analysis of the proposed techniques through a family of parametric
benchmarks. At a high level, the decision version reduces the UAQ
problem to SAT with an encoding similar to ours. The optimiza-
tion version invokes a SAT solver in binary search while trying to
minimize (or maximize) the set of roles that can be activated. They
then present various algorithms (search-based or SAT reduction as
discussed in Section 3.1) to tackle them efficiently. The authors also
show that the complexity result shown in [5] for the case obj = max
is different when there are constraints in the UAQ instance. More
specifically, they show that there is an upper bound (NP) for the
general UAQ problem and the case obj = max is intractable if the
UAQ instances have constraints. However, as we discussed in 4
in detail, our analysis revealed that the benchmarks they used in
their experiments may not adequately reflect the complexities of
various UAQ problem classes. An alternative approach, proposed
again by Mousavi et al. [14], to the generation of benchmarks is to
reduce the UAQ problem to constraint satisfaction problem (CSP)
and employ a (hard) CSP instance technique [19]. This approach is
particularly useful when generating hard UAQ problem instances,
as the authors do, however they are hardly representative of the
problem. In fact, our evaluations of their generation method mostly
resulted with instances that are very easy to solve by a PMaxSAT
solver.

More recently, a weighted variant of the UAQ problem has been
proposed in [10] and [11] where the importance of a permission
is also taken into consideration. The authors present various algo-
rithms along with their complexity and compare them empirically.
However, they consider role assignment (as opposed to role acti-
vation) as the primary constraint enforcement mechanism and the
benchmarks used in their experiments is not systematic.

The research on the enforcement of security constraints, in par-
ticular Separation of Duty (SoD), in RBAC has also contributed to
the discussion of UAQ. In [7] is has been observed that RBAC suffers
from an under-specification problem due to the way “sessions” are
employed in the standard [15]. The standard defines a set of high
level functions to model the security requirements of applications
while providing a bird-eye view to the authorization. However it
fails in supporting some important principles, e.g. least privilege,
for which run-time support becomes necessary. In [8] it is argued
that that sessions are very useful for the dynamic management
of roles. That this can be done efficiently is shown [2, 17]. More
specifically, [2] shows that the definition of MER constraints can
be extended so to cover multiple sessions (i.e. MS-MER) and role
activation history (H-MER). This way, the authorization constraints
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can be span multiple sessions and the the role activations occurred
in the past.

7 CONCLUSIONS

UAQ problem corresponds to policy evaluation procedure for role-
based access control systems and plays a critical role in their func-
tionality. It needs to be complete (i.e. finds a solution if there is
one) and efficient (does not hinder the overall RBAC system perfor-
mance). In this paper, we presented a systematic overview of the
computational complexity, existing algorithms and available bench-
marks pertinent to the UAQ problem. Our analysis of the currently
available benchmarks revealed that they are inadequate to analyze
the inherent complexity of different UAQ problem classes. We then
proposed a carefully studied methodology to generate UAQ bench-
marks starting from the known complexity results and used them to
evaluate the state-of-the-art UAQ solvers. Our experimental results
do not only show the effectiveness of the solvers over various UAQ
problem classes but also the impact of the chosen parameter in the
overall performance.

As future work we would like to apply the methodology pro-
posed in this paper to the UAQ problem specification framework
introduced in [9], using the complexity results provided in that
work to guide the generation of benchmarks.
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