
SEkey: A Distributed Hardware-based Key
Management System

Matteo FORNERO
CINI Cybersecurity National Lab.

Turin, Italy
matteo.fornero@consorzio-cini.it

Nicolò MAUNERO
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

nicolo.maunero@polito.it

Paolo PRINETTO
Politecnico di Torino

CINI Cybersecurity National Lab.
Turin, Italy

paolo.prinetto@polito.it

Antonio VARRIALE
B5 Labs Ltd.

Ta’ Xbiex, Malta
av@blu5labs.eu

Abstract—Cryptography plays a key role in all the aspects
of today cybersecurity and any cryptographic approach relies
on cryptographic keys, i.e., series of bits that determine how a
plain text is encrypted and decrypted, according to an agreed
algorithm. The secrecy and security of an encryption key are
thus crucial and fundamental: if the cryptographic key is com-
promised and known, everyone can decrypt a text encrypted ac-
cording to the strongest encryption algorithm. As a consequence,
several Key Management Systems (KMS) have been developed
to easily support the management of cryptographic keys, whose
number is constantly increasing, due to the amount of devices
and communications that take place today, even in very restricted
contexts. SEkey is a key management system developed targeting
a distributed environment, where it is possible to identify a single
central manager that acts as a Key Distribution Center (KDC)
and many users that locally store and manage their own keys.
Users, to a certain extent, can also work ‘offline’ without being
always in direct communication with the central manager. SEkey
is built leveraging the functionalities and physical properties of
the SEcubeTM Hardware Security Module (HSM). All the key
values and critical information are stored inside the SEcubeTM

and never leave the device in clear, and all the cryptographic
operations are performed by the SEcube itself. The guidelines
provided by NIST where followed during the whole development
process, guaranteeing all the most important security features
and principles.

I. INTRODUCTION

The increase in the number of connected devices, that has
been taking place for several years now, is posing several
security challenges by considerably enlarging the cyber attack
surface. The quantity and quality of data exchanged every
second among people and various devices is increasing at an
exponential rate, making it mandatory to secure them.

Cybersecurity is a term that includes several concepts, but
the fil rouge that connects them all is cryptography. As defined
by NIST [3], cryptography is the discipline that embodies
the principles, means and methods for the transformation of
data in order to hide their semantic content, prevent their
unauthorized use ore prevent their undetected modification.
This data transformation process takes place through math-
ematical operations, more or less complex, that combine
together the input data, usually referred to as cleartext, and
the cryptographic key to obtain the modified data as output,
what is usually referred to as cyphertext.

The cryptographic key is a a parameter used in conjunction
with a cryptographic algorithm that determines its operation
[6]. Drawing a parallel with everyday life, the role of a cryp-
tographic key is similar to the key of a lock. Locking is like
data encryption while unlocking is like data decryption and
just as in the case of a lock, also in cryptography protecting the
key is of paramount importance: even in presence of the best
encryption algorithm, if the cryptographic key is compromised
and everyone knows it, then everyone can access the encrypted
data.

Nowadays the amount of keys and the requirements for
their security make it practically impossible to manage them
by hand and for this reason the so-called Key Management
Systems (KMS) were born, applications that aim to automate
and simplify the management of cryptographic keys in highly
complex contexts.

In this paper we present SEkey, a mixed hardware-software
Key Management System, leveraging on the SEcubeTM1 Hard-
ware Security Module (HSM). SEkey is designed and devel-
oped having in mind a distributed ecosystem, where each
entity gets its own SEcubeTM device, which is in charge,
on the one hand, of securely store all the encryption keys
and, on the other hand, of provide all the security primitives
for securely managing keys and performing cryptographic
operations. This allows to never expose the actual key value
outside of the device when performing crypto operations. In
addition, during the key distribution process, keys are over-
cyphered with a unique key shared only by the administrator
and the user that receive the update. Inside SEkey, two roles
are available: the security administrator and the user. The
former one is in charge of distributing keys and synchronising
all the SEcubesTM, while the user passively uses its device for
security purposes, everything related to the key management
being automatically handled by the SEcubeTM device.

The paper is structured as follows: the next section intro-
duces a brief overview on the SEcubeTM project and device.
In the second section a brief analysis of the SOA on different
type of KMS is proposed and the most important guidelines
from NIST for KMS development are reported. Then the im-

1https://www.secube.eu/

https://www.secube.eu/


plementation and features of SEkey are presented, concluding
with possible improvements and future works.

II. THE SECUBETM OPEN SECURITY PLATFORM

The SEcubeTM Open Security Platform [14] leverages on
the functionalities of the SEcubeTM SoC to provide a security-
oriented open software and hardware platform. The SEcubeTM

SoC, developed by the Blu5 Group Company, includes three
main cores:

• A STM32F4 microcontroller unit, equipped with an ARM
Cortex-M4 processor.

• A reconfigurable hardware device (FPGA).
• An EAL 5+ certified Smart Card.

A 3D packaging of the three components and a set of custom
technological solutions improve the resiliency to side-channel
attacks [4] and to attempts to exfiltrate data from the device.

The SEcubeTM platform is equipped with set of high-
level APIs that abstract complex concepts of cybersecurity
and cryptography [15], designed to ease the development
of high security applications. Among the others, the open
source libraries [7] include SEfile [8] and SElink [7], aimed at
protecting data at rest and data in motion, respectively [16].
In particular, SElink provides a set of API that can be used
to securely handle communications channels via end-to-end
encryption, whereas SEfile provides a set of API for handling
files in a secure way, allowing secure implementations of the
most common system calls of the Posix Portable Operating
System Interface and WIN32. These APIs are a simplified
version of these system calls, not exposing all the functionali-
ties provided by them, but managing internally all the security
operation required for handling encrypted files.

III. BACKGROUND

A. Key Management Systems Overview

Key Management Systems can be clustered according to
different categories, including the way they are provided to
the customers, the organization of the Key Distribution Center,
and their key storage facilities.

According to the way a KMS is provided to the customers,
four categories are mostly used: software, virtual, appliance,
and service [5].

A software KMS is purely software-based and either imple-
ments its own protocol or is compliant with standard ones. The
software runs on an Operating System (OS) that is hosting the
KMS (typically, a sever built by the customers to accommodate
the KMS software).

A virtual KMS is a pre-installed virtual machine that runs
the KMS software in a virtualised environment. The hardware
where the VM runs is not shipped with the MKS and is under
control and responsibility of the customers.

An appliance KMS is an integrated hardware-software so-
lution. In this case both hardware and software are provided
to the customer and they can be, for example, a server
with certified hardware and software or a KMS running or
leveraging on a hardware security module.

Type Pros Cons

Software

Wide compatibility HW and OS provided by cus-
tomer

Runs on pre-existing hardware Hardware may not be certified
Runs on common OS OS may not be certified
Easy to fix and update Usually weaker

Virtual

Wide compatibility HW provided by customer
Runs on pre-existing hardware Hardware may not be certified
Easy to run multiple installa-
tions

Usually weaker

OS provided with the KMS Virtualization overhead
Easy to fix and update

Appliance

HW and SW provided with the
KMS

Lower flexibility

Turnkey installation Difficult to fix or update
All-in-one solution HW limitations
Usually more secure Usually more expensive

Service

No installation required Keys stored in the cloud
Easy to use No physical control
No local resources required
Flexible in terms of usage and
payments

TABLE I
PROS AND CONS OF DIFFERENT KINDS OF KMS [5]

A service KMS is a cloud-based solution that can be used
by the customers without the need of a specific hardware
or infrastructure. This approach is also known as KMS-as-
a-service and it is one of the most used solutions due to its
flexibility and its migration potentialities.

Table I summarises pros and cons of each solution.
When categorised according to their Key Distribution Center

(KDC), i.e., the entity responsible for distributing keys, KMS’s
are usually clustered as distributed, centralized and decentral-
ized [11]. A centralized KMS is built around a single central
entity that is in charge of managing the keys and distributing
them to all the users. In a distributed KMS there is no single
master entity and each user of the KMS manages her/his
own keys and uses contributory key agreement protocols [1]
to collaborate and contribute, with all other members of the
group, to the creation of a shared key. In a decentralized KMS
users are split into several smaller sub-groups, each managed
by an appointed manager who can, in turn, refer or not to a
manager of the entire KMS.

Whit respect to the adopted key storage solution, KMS’s
are usually defined as centralised or distributed [9]. In the
former case all the keys are stored by the master entity of the
KMS that is in charge of providing secure storage for all of
them, whereas in the latter one each user is in charge of storing
her/his own keys in a secure way and should be provided with
all the tools necessary to fulfil this requirement. An example of
distributed KMS can be the Apple Secure Enclave Processor
(SEP) [10] an isolated component from the main processor that
provides secure storage for critical information, finger print,
cryptographic keys, etc. but also cryptographic primitives for
the main system.

B. NIST Recommendation

US NIST plays a key role in providing guidelines and
recommendation for Key Management and KMS development
[2], today widely and extensively adopted by the implementers



Fig. 1. Key State and Transactions

of KMS’s worldwide. In the sequel we briefly recall some of
most significant issues pointed out in the NIST’s documents

Key life cycle: each key is characterised by a state [2].
There exists different possible states and a key, at a given
point in time, can be in one of these states that determines how
the key can be used. Figure 1 shows states and the permitted
transition from one state to another.

• Pre-activation: when a key is created it enters this state
and it cannot be used until “activated”.

• Active: in order to be used, a key must be in this state.
• Suspended: when in this state, the key cannot be used,

but it can be activated again.
• Deactivated: the key can be used only to decrypt, but no

longer to encrypt. When a key is replaced by a newer
one, it is still needed for decrypting data encrypted with
it.

• Compromised: this is a warning state. It means that the
key is, or may be, compromised due to, for example, a
data breach; the key can still be used for both encryption
and decryption but with particular care. A compromised
key cannot be reactivated.

• Destroyed: when in this state the key is completely
removed from the system.

Cryptoperiod is the time span during which a specific key
can be used. This quantity is extremely important and it is
strictly related to the security of a cryptographic key, the more
a key is used and more frequently a key must be updated in
order to lower the chance for it to be compromised.

Pysical and logical access protection this is of paramount
importance for the KMS. Access to keys must be protected
physically and logically to avoid any disclosure of criti-
cal information, unwanted modifications unauthorised usage
or access. For the physical protection, NIST suggests the

adoption of custom hardware solutions, such as hardware
security modules. Logical protection measures include en-
cryption, authentication, integrity checks, access control and
accountability.

Physical and logical separation of roles for the actors
within the KMS. Access to physical assets, such as, key
servers, backup servers, etc. must be limited and monitored,
similarly, from a logical perspective the adoption of different
privilege levels can be used to limit the access to critical
features of the KMS:

• Separation of Duties: no user in the system should
have enough privileges to be able to misuse the system.
Critical functionalities are split among different members
to prevent that a single user has enough information or
privileges to maliciously damage the whole system.

• Least Privilege: each member or actor of the system is
given the least amount of access privileges that allows
she/he to perform her/his jobs.

All the above guidelines and principles have been strictly
followed and adopted during the design and implementation
of the SEkey KMS.

IV. SEKEY

In this section we introduce the basic features of SEkey,
a KMS that leverages on the features and functionalities
provided by the SEcubeTM hardware security module. In
particular the shall focus on (i) SEkey general architecture,
(ii) the concept of User Groups, (iii) the different roles within
the KMS, (iv) how the SEcubeTM is profitably employed, (v)
the internal structure of SEkey, (vi) the cryptographic keys
distribution mechanism, and (vii) the key management feature.

A. SEkey General Architecture

As shown in Figure 2, SEkey manages and distributes
cryptographic keys shared among users who are clustered
in groups [16]; each one being characterised by a custom
security policy. The KMS is controlled by an administrator
who interacts with the users by means of APIs performing
a wide range of actions, such as creating and distributing
cryptographic keys, creating and managing users and groups,
etc.
A peculiar aspect of SEkey is that each user is forced to
make use of a dedicated SEcubeTM device, thus implementing
a distributed architecture wherein the cryptographic keys are
automatically delivered to the users, who securely store them
inside their SEcubeTM devices. Therefore, the users make use
of the KMS together with their SEcubeTM devices in order to
secure the data they need to exchange or store.

B. User Groups

At the core of SEkey there is the notion of group [16], which
is the fundamental component used to control the users and
the access to the cryptographic keys. Each group consists of an
arbitrary number of users and cryptographic keys. Every user
of SEkey belongs to a specific set of groups; similarly, every
cryptographic key of the KMS is owned by a specific group. A



Fig. 2. SEkey General Architecture

user may belong to several groups, therefore the intersection
of multiple groups may not be empty. On the other hand,
the ownership of cryptographic keys is fixed; a key is always
owned exclusively by a single group without any possibility
of changing the owner. Notice that the ownership of a key is
always referred to a group, never to a single user.
The users gain access only to the cryptographic keys owned by
the groups to which they belong; therefore, the members of a
group can encrypt shared information using the cryptographic
keys owned by the group. Note that two users can share
encrypted information only if both belong to at least one
group together, meaning that they both have access to (at
least) one common symmetric encryption key. Moreover, each
group is associated with a set of security policies detailing
specific rules to be followed when managing the security of
that specific group. These include, among the others, details
about the cryptographic algorithms to be adopted, the resource
(software, hardware, smart card) to be used for cyphering, the
default cryptoperiod of the keys, the schedule of their updating,
and so on.

This hierarchy is based on a simple concept: the smaller
the group, the higher its security [16]. This idea arises from
the assumption that a smaller group involves a reduced num-
ber of individuals, therefore the security risks are inherently
mitigated because the surface available for a cyber attack is
greatly reduced and the sensitive information is shared among
a smaller number of people.

C. Roles of the Involved Actors

Actors operating in the SEkey KMS perform as administra-
tor or user. Each role is fixed, meaning that the administrator
is not a user and the users cannot act as administrator.
The administrator plays a key role, being the only one having
the privilege to modify the configuration of the KMS (i.e.,
create, distribute, destroy cryptographic keys) and to set up
the groups and the users. In this way, the administrator is able

to set up the security perimeter of each user and the rules
(security policies) for each group; all these information and
constraints can be updated at any time by the administrator.
The SEcubeTM device of the administrator contains all the
informations managed by the KMS, including all the crypto-
graphic keys; this is mainly to allow the system to recover from
faults that may happen on the user side. Following the “need-
to-know” principle, the administrator shares with the users
only the minimum necessary set of information: for example,
a user ignores the existence of other people outside of his
groups.

Users play a passive role, since they can use the KMS
but they are not allowed to perform any change, neither in
the system configuration nor in the involved keys. A user
can, in fact, access its own set of cryptographic keys, only;
moreover, each key can be used to perform cryptographic
operations only towards specific recipients. A user is unable
to perform operations which have not been authorized by the
administrator (e.g., communicating with users with whom he
has got no group in common).

D. SEkey Internal Implementation

A KMS, in addition to cryptographic keys, requires to
properly manage also other information and metadata which
are essential to the system. To effectively and efficiently tackle
this issue, each user of SEkey is given a private instance of
the SEcubeTM device, which is used to store these critical
information items in different locations. In particular, keys are
stored in the internal memory of the SEcubeTM devices in
order to guarantee the highest level of physical protection,
whereas the metadata are stored into its MicroSD card. The
main reason for this separation is that the size of the internal
flash memory of the SEcubeTM device is limited to 2 MB, thus
it has been reserved to the cryptographic keys.

All the cryptographic primitives are executed by the
SEcubeTM itself, the user (and administrator as well) only gets
the output of those operations, such as encrypted or decrypted
data, computed signatures and so on. Moreover, the firmware
of the device does not expose neither any function to read
the content of the internal memory nor key values in clear,
granting a good level of isolation from the main system: it is
impossible to retrieve actual key values because no trace of
them can be found anywhere else except the internal memory
of the SEcubeTM devices. Furthermore, as described in Section
II, the SEcubeTM provides a great level of physical protection
for the data stored in the internal memory.

Since the metadata about keys, users, and groups are stored
into a MicroSD card, a different strategy is required to grant
a suitable level of security and protection. This alternative
strategy relies on SEfile (see Section II): a library of the
SEcubeTM Open Source SDK that allows to encrypt files and
work with them while keeping everything constantly encrypted
on disk. SEfile works together with the open source SQLite2

database engine in order to implement a library called ‘Secure

2https://www.sqlite.org/index.html

https://www.sqlite.org/index.html


Database’. In this library, specific for the SEcubeTM device,
the SQLite database engine has been tweaked to work on a
constantly encrypted database while granting confidentiality,
integrity and authentication of the DB files thanks to the
cryptographic primitives provided by the SEcubeTM device.

E. SEkey Internal Structure

Fig. 3. Update Distribution

The logical structure of the key management system is
physically supported by the SEcubeTM devices, one for each
user and one for the administrator.

Each SEcubeTM is protected by a pair of PIN codes that
must be used in order to access to the functionalities provided
by the device. Each PIN code is unique to a given SEcubeTM

and it is associated to a specific privilege level, admin and
user. Notice that the PIN codes of each SEcubeTM are set
during the physical initialization of the device, which takes
place before the HSM is physically handed to the user or to
the administrator.
The PIN codes of the SEcubeTM devices are not related to
the actual role performed by the actors of the KMS. Their
only purpose is to stop unauthorised people from accessing
to the functionalities of the device or limiting the features
exposed by the firmware of the SEcubeTM to boost the overall
security of the system. Following the Least Privilege paradigm,
see Section III-B, only the minimum amount of information,
required by each involved actor to perform its operations, is
disclosed [12]. For example, each user is provided only with
the PIN that grants access to the user privilege level of his
SEcubeTM device while the PIN for the admin level is kept
secret inside the SEcubeTM of the administrator.

Having a distributed architecture where the SEcubeTM de-
vices of the users store locally every information that is
required for the correct functioning of the KMS, a dedicated
secure protocol to share and distribute the data (i.e. groups up-
date, the cryptographic keys and so on) from the administrator
to the users is required.

The distribution of the data is always initiated by the
administrator, who automatically pushes the data to the users;
then the users process these data and store them inside their
SEcubeTM devices.

This mechanism requires a very simple underlying infras-
tructure, shown in Figure 3, because it works by means of

update files generated specifically for each user of the system.
The update files are encrypted with a key that is known
only to the administrator and to the recipient; thus, a secure
end-to-end channel terminated on the host computers of the
involved parties is implemented. Whenever a new update file
is generated by the administrator of SEkey, it is written to a
non-volatile memory support that must be accessible also to
the users. This non-volatile memory could be anything ranging
from a shared disk in a LAN to a cloud service, the only
requirement is that all parties involved in the KMS must be
able to access to it.
SEkey is configured to automatically generate the update files
from the administrator side, and to automatically process them
from the user side. The update files contain every data that a
given user is entitled to store on his personal SEcubeTM.

F. Cryptographic Key Distribution

When SEkey needs to share a cryptographic key from the
SEcubeTM of the administrator to the SEcubeTM of a user,
that key must be exported from the HSM of the administrator
and written to the update file of the user. The encrypted
channel implemented by the update file (see Section ??) is not
sufficient to protect the key because its value would still be
visible to the administrator (the plaintext content of the update
file is initially built in the host computer of the administrator,
then it is encrypted by the SEcubeTM and finally written to the
update file). In order to solve this problem, SEkey implements
another encrypted end-to-end channel, this time created inside
the update file. This channel is terminated directly on the
SEcubeTM devices of the involved parties (administrator and
user), it allows to export a key from the SEcubeTM of the
administrator only if that key is already wrapped with another
key (which is unique for each user). In this way, the key is
already exported outside of the SEcubeTM in an encrypted
format guaranteeing that even the administrator cannot see its
real value. When the SEcubeTM of a user receives a wrapped
key, it removes the wrapping and stores the key inside its flash
memory, never exposing the real value of the key outside of
the HSM.
From a physical point of view, the generation of the cryp-
tographic keys managed by the KMS is always performed
inside the SEcubeTM of the administrator using a True Random
Number Generator embedded in the SEcubeTM MCU [13],
guaranteeing that each key is random and secure.

G. Key Management Features

The ultimate goal of a KMS is to manage the life cycle
of cryptographic keys. In this sense, SEkey offers several
features: each key is characterised by several properties, the
most important being the cryptoperiod and the state, see
Section III-B.

The cryptoperiod of a key is set, by default, to the value
specified by the security policy of the groups that owns the key.
However, it can also be set to a lower value if needed; values
higher than the default one are not allowed. The cryptoperiod
determines for how long a key can be used to encrypt data.



The state, instead, determines the current condition of the
key. For example, a key can be used to apply cryptographic
protection (encrypt data) only if it is in the active state; on the
other hand, it can be used to decrypt data also if it is not active.
Some states, such as destroyed and compromised, always
prevent SEkey from using a key due to security reasons.

Depending on its cryptoperiod and on its state, a key may
be eligible for usage. SEkey automatically manages a portion
of the life cycle of each cryptographic key, for example it
deactivates the keys whose cryptoperiod is expired and it has
built-in protection mechanisms to prevent the usage of keys
depending on their current state.

When an application needs to perform an encryption op-
eration, it can simply call an API of the KMS that returns
the unique identifier of the most secure key to be used,
then that identifier is passed to the encryption APIs of the
SEcubeTM. The most secure key to be used in a given situation
is determined by the list of the recipients of the data to be
encrypted. Here comes into play the concept of group, see
Section IV-B, so if a user needs to encrypt a message that
must be sent to another user, SEkey will automatically search
a usable key belonging to the smallest group in common
between all the parties involved in the communication, because
a smaller group is considered to be safer. The same holds if
a user wants to encrypt data for private usage, for example
before storing them on a cloud server. In that case the user
will specify himself as the only recipient, so SEkey will search
for a usable key belonging to a group where that user is the
only member.

In addition to the keys managed by the KMS, there are
also other cryptographic keys which are required to make the
system working correctly. These keys are not under the direct
control of the KMS or the administrator, they are generated
automatically by the system in order to encrypt data locally
to each SEcubeTM. For example, every SEcubeTM generates a
unique key that is used to encrypt the metadata database of
SEkey. Notice that these keys are automatically generated and
used by the KMS, however, they are not visible from the point
of view of the administrator and of the user.

V. CONCLUSIONS

In this paper was presented SEkey, a key management
system that leverages the peculiar features and functionalities
of the SEcubeTM hardware security module to provide all what
is required to securely manage cryptographic keys.

During the design of SEkey, all the most important security
dictates provided in the NIST guidelines were followed. To
each key is associated a cryptoperiod, its lifespan during which
is possible to use the key, and a state. There are seven different
states that determine the type of operations that a key can
perform. Moreover, following the ‘Least Privilege’ principle,
two actors, with different privileges, have been identified in the
KMS, the administrator and the user, the former having all
the privilege required to perform any modification to the KMS
data while the latter only using the KMS passively without any
authority to make modifications and changes.

The SEkey KMS is based on a distributed structure built
around a single central entity, the administrator, who also
plays the role of the key distribution center, and several
users who locally save and manage their cryptographic keys.
KMS users are organised according to a particular hierarchy
that provides multiple groups, each characterised by specific
security policies. Users can communicate and share informa-
tion with each other by means of symmetric cryptographic
keys shared shared within the group. Each actor in the KMS
has its own SEcubeTM HSM, all cryptographic keys and
critical informations are stored securely in the internal device
flash memory. Moreover all the cryptographic primitives are
provided by the SEcubeTM itself, hence keys never leave the
device for performing crypto operation and are never exposed
in clear; the keys that are distributed by the administrator
are over-encrypted with a unique key shared only between
the administrator and the user who must receive them. To
limit the use of the device’s internal memory, all the metadata
associated with each key and groups are saved, on a MicroSD
card connected to the SEcubeTM, in an aways encrypted
database, thus guaranteeing the integrity, confidentiality and
authenticity of these data.

As far as future improvements there are few things that can
be addressed in order to improve the overall system:

• Management of session keys: keys that can be generated,
used and dismissed within a group when there is the need
of instantiating a communication channel. In this way
it is possible to better separate keys that can be used
to cryptographically secure data at rest (e.g., files) and
data in motion (e.g., calls). Groups can internally manage
the creation of these type of keys, using for example a
contributory key agreement protocol, without querying
the central manager.

• Improvement in the internal flash memory management of
the device: since flash memories have a limited amount of
write operations that can be performed, having to replace
every now and then keys inside it can quickly wear out
memory.

• Implementation of a PUF inside the device: this can be
used either as a strong private cryptographic key, used
for example for the metadata database encryption, or as
a unique key shared by the administrator and each user
used for the encryption of SEkey update messages.

VI. ACKNOWLEDGMENTS

The activities presented in the present paper are par-
tially supported by the European Union’s Horizon 2020 re-
search and innovation programme, under grant agreement No.
830892, project SPARTA and by B5 Labs Ltd..

REFERENCES

[1] Y. Amir, Y. Kim, C. Nita-Rotaru, J. L. Schultz, J. Stanton, and G. Tsudik.
Secure group communication using robust contributory key agreement.
IEEE Transactions on Parallel and Distributed Systems, 15(5):468–480,
2004.

[2] E. Barker. Recommendation for key management: Part 1 - general. NIST,
Tech. Rep, 2020.



[3] W. C. Barker. Guideline for identifying an information system as a
national security system. NIST, Tech. Rep, 2003.

[4] M. Bollo, A. Carelli, S. Di Carlo, and P. Prinetto. Side-channel analysis
of secube™ platform. In 2017 IEEE East-West Design Test Symposium
(EWDTS), pages 1–5, 2017.

[5] CRYPTOMAThIC. Selecting The Right Key Management
System. https://www.cryptomathic.com/hubfs/Documents/White
Papers/Cryptomathic White Paper - Selecting The Right Key
Management System.pdf, 2019. [Online; accessed 22-July-2020].

[6] K. Dempsey, M. Nieles, and V. Y. Pillitteri. An introduction to
information security. NIST, Tech. Rep, 2017.

[7] M. Fornero, N. Maunero, P. Prinetto, G. Roascio, and A. Varriale.
SEcube Open Security Platform - Introduction. https://www.secube.eu/
site/assets/files/1218/wiki.pdf, 2019. [Online; accessed 22-July-2020].

[8] M. Fornero, N. Maunero, P. Prinetto, G. Roascio, and A. Varriale. SEfile
Documentation. https://www.secube.eu/site/assets/files/1218/wiki.pdf,
2020. [Online; accessed 22-July-2020].

[9] V. Gopal, S. Fadnavis, and J. Coffman. Low-cost distributed key
management. In 2018 IEEE World Congress on Services (SERVICES),
pages 57–58, 2018.

[10] T. Mandt, M. Solnik, and D. Wang. Demystifying the secure enclave
processor. Black Hat Las Vegas, 2016.

[11] Sandro Rafaeli and David Hutchison. A survey of key management
for secure group communication. ACM Computing Surveys (CSUR),
35(3):309–329, 2003.

[12] F. B. Schneider. Least privilege and more [computer security]. IEEE
Security Privacy, 1(5):55–59, 2003.

[13] STMicroelectronics. AN4230 Application Note - STM32
microcontroller random number generation validation using the
NIST statistical test suite. https://www.st.com/resource/en/application
note/dm00073853-stm32-microcontroller-random-number-generation-
validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf,
2020. [Online; accessed 22-July-2020].

[14] A. Varriale, E. I. Vatajelu, G. Di Natale, P. Prinetto, P. Trotta, and
T. Margaria. Secube™: An open-source security platform in a single
soc. In 2016 International Conference on Design and Technology of
Integrated Systems in Nanoscale Era (DTIS), pages 1–6, 2016.

[15] Antonio Varriale, Giorgio Di Natale, Paolo Prinetto, Bernhard Steffen,
and Tiziana Margaria. Secube (tm): an open security platform-general
approach and strategies. In Proceedings of the International Conference
on Security and Management (SAM), page 131. The Steering Committee
of The World Congress in Computer Science, Computer . . . , 2016.

[16] Antonio Varriale, Paolo Prinetto, Alberto Carelli, and Pascal Trotta.
Secube (tm): Data at rest and data in motion protection. In Proceedings
of the International Conference on Security and Management (SAM),
page 138. The Steering Committee of The World Congress in Computer
Science, Computer . . . , 2016.

https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.cryptomathic.com/hubfs/Documents/White_Papers/Cryptomathic_White_Paper_-_Selecting_The_Right_Key_Management_System.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.secube.eu/site/assets/files/1218/wiki.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf
https://www.st.com/resource/en/application_note/dm00073853-stm32-microcontroller-random-number-generation-validation-using-the-nist-statistical-test-suite-stmicroelectronics.pdf

	Introduction
	The SEcubeTM Open Security Platform
	Background
	Key Management Systems Overview
	NIST Recommendation

	SEkey
	SEkey General Architecture
	User Groups
	Roles of the Involved Actors
	SEkey Internal Implementation
	SEkey Internal Structure
	Cryptographic Key Distribution
	Key Management Features

	Conclusions
	Acknowledgments
	References

