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Abstract

Cyber Ranges are complex infrastructures hosting exercises of the highest quality
that simulate cybersecurity scenarios of real-world complexity. Building the computing
infrastructure is only the first step towards the successful execution of the cyber exer-
cises. The design, validation and deployment of scenarios are costly and error-prone
activities. As a matter of facts, a misconfiguration in the scenario can compromise the
exercise and the training goals. This make the design, development and deployment of
live-fire cyber exercises of real-world complexity complexity so expensive that can be
afforded only by a limited number of organizations. In this paper we present CRACK,
a framework for automating the (i) design, (ii) model validation, (iii) generation and
(iv) testing of cyber scenarios. We introduce the CRACK SDL, a Scenario Definition
Language based on TOSCA, an OASIS standard for the specification and orchestration
of virtual infrastructures. CRACK SDL allows for the high level, declarative spec-
ification of the components and their interplay. Through a formal encoding of the
properties of a SDL specification, CRACK also supports the automatic validation of
a scenario against its training objectives. After a successful validation the scenario is
automatically deployed in the Cyber Range and automatically tested to check the corre-
spondence between the behavior of the deployed system and its specification. The key
functionalities offered by CRACK are presented through a simple, yet representative
case study. Experimental results confirm the effectiveness of the proposed approach.

1. Introduction

The complexity and scale of today’s cybersecurity threat landscape are straining
the defenses of organizations which are thus increasingly being exposed to risks that
can disruptively affect their businesses. Threats agents are no longer only endowed
with advanced technical skills. Often they now have powerful tools in their arsenal, are5

well resourced, and may even have in-depth knowledge of the business processes of the
organizations they target. Mitigating, let alone countering, these risks is a formidable
challenge for cybersecurity operators. This requires the ability to detect early signs of
cybersecurity incidents in large, sophisticated ICT infrastructures as well as to swiftly
identify the most appropriate countermeasures. In order to achieve the needed level10

of preparedness, operators must be properly trained by means of live-fire exercises
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conducted in (possibly simulated) ICT infrastructures with scale and complexity com-
parable to those they are asked to protect on a daily basis.

Cyber Ranges are computing platforms that aim at providing a sophisticated train-
ing environment for cybersecurity operators. By leveraging virtualization technologies,15

Cyber Ranges can offer cyber exercises of extreme realism: large scale ICT infrastruc-
tures consisting of hundreds of interconnected devices, each supporting the protocol
stack, operating system, and applications of choice can be simulated on commercial
hardware or by leveraging IaaS providers. Cyber Ranges are being used to routinely
carry out large scale cyber exercises. For instance, NATO conducts the Locked Shields20

cyber exercise [1] on a yearly basis since 2010. In Locked Shields blue teams must de-
fend a given (simulated) ICT infrastructure from attacks mounted by a red team. The
simulated ICT infrastructures used in Locked Shields consist of around four thousand
virtualized systems and are executed in a dedicated Cyber Range.

Since the need of advanced cybersecurity training is now perceived by a wide audi-25

ence (e.g., the civil sector), a number of Cyber Range solutions, both commercial (e.g.,
Cyber Range in a Box [2], Cyberbit Range [3], and NetWars [4]) and open source
(e.g., ADLES [5], CyRIS [6], and KYPO [7]), have recently being put forward. These
solutions enable the execution and monitoring of sophisticated cyber exercises. Yet,
live-fire cyber exercises run against simulated ICT infrastructures of real-world com-30

plexity can be afforded only by a limited number of organizations. This is due to the
fact that the design, development, and deployment of scenarios of real-world complex-
ity are error-prone, time-consuming activities that require the involvement of highly
specialized personnel.

To illustrate, consider the difficulty in installing the necessary software in and con-35

figuring each and every client, server, router, gateway in a complex scenario comprising
hundreds of such devices. The resulting infrastructure, namely the theater, must then
turned into an appropriate training scenario by injecting vulnerabilities (e.g., miscon-
figurations and software bugs) in it, thereby leading to a training scenario. This step
is fraught of difficulties as the injection of too many (or too easy to discover) vulner-40

abilities may lead to a scenario that can be trivially solved, whereas the injection of
too few (or too difficult to discover) vulnerabilities may lead to a frustrating experience
for the participants. The problem is even more challenging if multi-stage attacks must
be simulated. Unfortunately, a mistake made during the design of the theater may be
discovered only at a later stage, e.g., during the development, the deployment or even45

the execution of the cyber exercise.
In this paper we present the Cyber Range Automated Construction Kit (CRACK).

CRACK supports the piq design, piiq automated validation and piiiq automated testing
of complex Cyber Range scenarios of real-world complexity.
Design. We define CRACK SDL, a Scenario Definition Language based on TOSCA [8],50

an infrastructure specification language standardized by OASIS. As we will see, spec-
ifications expressed in CRACK SDL can be readily composed and reused and this
greatly simplifies the design process. Moreover, since CRACK SDL is an extension of
TOSCA, its integration with the existing infrastructure design technologies comes with
no additional effort.55

Validation. The CRACK SDL type system allows for the automatic validation of
the scenarios against several design errors, e.g., incorrect hardware/software bindings.
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More importantly, we show how a CRACK SDL specification can be translated into
a corresponding Datalog specification which can be automatically checked by off-the-
shelf Datalog engines. This allows the user to validate the CRACK SDL specifications60

against the training objectives.
Deployment. We show how a CRACK SDL specification is automatically translated
into a sequence of instructions for a virtualization environment. Executing these in-
structions leads to the fully automated instantiation of all the elements of the scenario.
As we will see, this process can take place on any TOSCA-compatible infrastructure65

virtualization platform.
Testing. We show that validation traces generated by the Datalog engine can be auto-
matically turned into test cases for the scenario. The execution of the test cases checks
whether the properties validated on the SDL specification (cf. Validation) are also en-
joyed by the scenario at runtime.70

As a further contribution, we introduce a case study consisting of two scenarios
based on the same infrastructure and sharing the same goal (i.e., data exfiltration). Yet,
the two scenarios are affected by distinct vulnerabilities that allow for different training
objectives. The case study will be used as a working example through the paper in
order to illustrate the functionalities of CRACK as well as the experimental results that75

confirm the effectiveness of our approach.
This paper is structured as follows. In Section 2 we describe our case study and the

working example. In Section 3 we recall some preliminary notions and, in Section 4
we present our scenario definition language. Then we introduce CRACK in Section 5
and we demonstrate and evaluate it in Section 6. In Section 7 we discuss the related80

work. Finally, in Section 8 we draw the conclusions.

2. Case Study: ACME Corp

In this section, we introduce ACME Corp, a case study based on a fictional ICT
infrastructure depicted in Figure 1. It consists of a segmented network where each
segment hosts services and devices related to a specific task: (i) Server contains the in-85

ternal services (i.e., not meant to be publicly accessible), (ii) DMZ contains the public
services (i.e., exposed to the outside world) and (iii) IoT connects field devices (i.e.,
sensors, actuators and controllers). These three networks lay behind a firewall protect-
ing the perimeter of the company. The firewall is intentionally left open toward the
DMZ to allow remote connections. A domain name server (DNS), called ns, translates90

the symbolic names of the DMZ hosts into their actual IP addresses. The infrastruc-
ture is connected to the public Internet through the backbone of the Internet service
provider.

The infrastructure of Figure 1 is the stage for the execution of two scenarios. Both
of them involve a blue team and a red team. The blue team has the generic goal to95

protect the ACME Corp assets (e.g., data and services). The red team has the specific
goal to exfiltrate data from the private database residing on db. Playing the role of
the ACME Corp IT security department, the blue team has full access to the internal
network, whereas the red team has only access to the public Internet through a remote
client machine.100
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Figure 1: Case study infrastructure.

The two scenarios have different scope and training objectives. We briefly discuss
them below.

Scenario 1 – Host Security. In this scenario the red team can achieve its goal by ex-
ploiting some security weaknesses in the configuration of the www server, including:

1. www runs an HTTP server exposing the home directories of the users; this en-105

ables a dictionary-based enumeration of the existing accounts.3

2. One of the enumerable users of www has a weak password, i.e., a password that
is subject to brute-force attack.4

3. The administrator of www is exposed to an Escalation of Privileges (EoP) An
EoP vulnerability allows the attacker to acquire the privileges of the administra-110

tor.

Scenario 2 – Web Security. In this case, the red team can exploit the weaknesses given
below.

1. The remote debugging interface of the CMS is active, so allowing for Python
commands injection.5115

3https://attack.mitre.org/techniques/T1087/
4https://attack.mitre.org/techniques/T1110/
5https://www.netscylla.com/blog/2018/10/03/werkzeug-debugger.html
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Figure 2: Cyber Range logical scheme.

2. The application server runs with unnecessary administrator privileges,6 so ex-
posing the database access credentials.

For the sake of presentation, here we only focus on the elements discussed above.
In particular, we only consider the part of the infrastructure highlighted in Figure 1.
We will use this part of the infrastructure and the first scenario as a working example120

through the paper. Then, in Section 6.4, we will discuss the effort needed to pass from
the first to the second scenario.

3. Preliminaries

In this section, we briefly recall the notions that are relevant for correctly under-
standing the content of the paper.125

3.1. Cyber ranges and training

According to the National Institute of Standards and Technologies Cyber Ranges
are “interactive, [. . . ] representations of an organization’s local network, system, tools,
and applications that are connected to a simulated Internet level environment.”7 The
goal of a Cyber Range is to “provide a safe, legal environment to gain hands-on cyber130

skills and a secure environment for product development and security posture testing.”8

In the spirit of the above definition, in this work, we propose a logical structure of
a generic Cyber Range. Such a structure is depicted in Figure 2. The management fa-
cilities support the planning and execution of the activities conducted within the Cyber

6https://cwe.mitre.org/data/definitions/250.html
7https://www.nist.gov/sites/default/files/documents/2017/05/23/cyber_

ranges_2017.pdf
8ibid.
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Range. This may imply the monitoring of the Cyber Range activities possibly driving135

their evolution along a given story line.
The hands-on training is carried out within an infrastructure, consisting of a pool

of (virtualized) networks, computers, and applications hosted by some provider. We
call such an infrastructure the theater. Intuitively, we consider part of the theater all the
elements that are not specific to the training objectives, i.e., any object that is passively140

or marginally involved in the current exercise. For instance, the routing infrastructure
of a layered network architecture, being only responsible for the exchange of messages,
is a part of the theater.

On top of the theater, the scenario is the collection of all the items that are relevant
for the hands-on activity. A typical scenario involves some applications, e.g., a remote145

shell or a Content Management System (CMS). Such applications are customized with
configurations, e.g., the remote authentication method, and artifacts, e.g., an authenti-
cation key, that plays a role in the scenario. Similarly, user accounts can be included.
A user can be related to all of the elements mentioned above, e.g., the administrator
of a service (application) has also access to its files (artifacts and configurations). Fi-150

nally, vulnerabilities must be injected to enable the attackers’ exploits. Vulnerabilities
are a cornerstone of every scenario and they can involve any of the elements discussed
above, e.g., a user setting a weak password or an application failing in sanitizing an
input.

Beside the scenario, the theater must also provide the gameplay facilities, i.e., the155

scoring and rule systems as well as the team support. For instance, in a scenario some
servers cannot be attacked (engagement rules) or the blue team loses points when a cer-
tain service becomes unavailable (service level agreement). Similarly, the teams may
be required to operate through some terminals that only provide a limited number of
security tools. These elements cannot be developed once for all as they are scenario-160

dependent. Nevertheless, they can be occasionally reused, e.g., the same scoring sys-
tem might apply to a certain category of exercises.

Since in this work we deal with the design and verification of the scenarios, we only
focus on the part of the elements of Figure 2. In particular, we will reason about the sce-
nario elements (light gray boxes). Moreover, we will discuss the infrastructure provider165

technologies that support the deployment of theaters and scenarios. Instead, we will
skip the presentation of the management and gameplay elements (dashed boxes).

3.2. Infrastructure provisioning
In this section, we briefly recall the two infrastructure provisioning paradigms in-

volved in our proposal.170

Infrastructure-as-a-Service (IaaS). IaaS [9] aims at providing a flexible and recon-
figurable infrastructure development platform. In particular, an IaaS provider allows
for a direct control over machines, operating systems, applications, and networking.
By relying on virtualization technologies, IaaS platforms hide the underlying, physical
infrastructure (a.k.a. bare-metal).175

In a Cyber Range, each theater consists of many different elements including hosts
(e.g., servers and desktop clients), software (e.g., operating systems and applications)
and network facilities (e.g., routers and firewalls). Conveniently, IaaS providers expose
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Figure 3: Layered view of the working example theater deployed over an IaaS provider.

APIs for creating, deleting, and reconfiguring these elements. This makes IaaS a suit-
able paradigm for defining and deploying a Cyber Range theater. In this setting, the180

building blocks of any theater are virtual machines (for computing and storage) and
virtual switches, routers, networks, and network ports (for implementing the network
infrastructure). Although some elements may not allow virtualization, a virtual net-
work can also be connected with some physical resources outside the IaaS platform.
For instance, an infrastructure can be connected to the Internet through a gateway.185

Figure 3 represents the deployment of the theater of our working example (see
Section 2) on an IaaS provider. The theater is depicted on the top layer. Intuitively, all
the elements of the theater are virtual with the only exception of the Internet which is
only partially simulated. The real Internet is accessible through a gateway that directly
connects to the external network. Moreover, the IaaS supports for the virtualization of190

part of the Cyber Range facilities, such as the scoreboard and rule monitoring services.
These facilities stay on a different layer as they are not accessible from within the
theater. Instead, they operate through a management network that is responsible for the
cross-layer connectivity. Such connectivity is necessary to orchestrate the theater, i.e.,
to create and configure the virtual infrastructure.195

Infrastructure-as-Code (IaC). On an IaaS provider, instantiating the infrastructure as
in Section 2 requires the following operations.

1. Create the virtual networks, e.g., Server and DMZ.
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Figure 4: A generic IaC specification for the working example theater.

2. Create all the virtual machines, e.g., db and www.
3. Connect each virtual machine to the proper networks, e.g., db to Server.200

4. Install all the operating systems and applications, e.g., DBMS on db.
5. Finalize the infrastructure by adding configurations, artifacts, and users.

All these operations are carried out by submitting the corresponding commands,
e.g., via some APIs, to the IaaS provider. Nevertheless, as the complexity of the infras-
tructure increases, handling these design and deployment operations without a system-205

atic approach quickly becomes cumbersome and error-prone.
In the last years Infrastructure-as-Code (IaC) [10] emerged as the main infrastruc-

ture design approach. A IaC framework uses a specification language to model the
desired infrastructure. A provisioning tool, called orchestrator, takes as input the spec-
ification and automatically deploys the infrastructure on an IaaS provider. We propose210

the following example to clarify the structure of a generic IaC specification language.
Figure 4 provides a class diagram representation of the infrastructure appearing in

the working example. The box at the bottom, labeled with Primitive, contains (some
of) the primitive classes defined by a generic IaC provider. These classes abstractly
define the building blocks of the infrastructure, e.g., machines and networks.215

The Network class allows for the creation of virtual networks. Each virtual network
is a collection of virtual subnetworks, i.e., the Subnetwork class. A virtual subnetwork
is labeled with two properties, i.e., address and netmask, that specify the network ad-
dress and netmask of the subnetwork.

The Compute class represents a generic host, e.g., a virtual machine. An instance of220

Compute must declare its image, i.e., the installed OS, flavor, i.e., the hardware profile,
and init_script, i.e., the instructions to correctly configure the host. There can also
be dependencies between Compute objects. For instance, the www server depends
on the db server. Typically, the orchestrator is responsible for resolving the existing
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P(a, b).
P(b, c).
Q(A, B) :- P(A, C), P(C, B).
Q(X, c)?

1: P(b, c).
2: P(a, b).
3: Q(a, c) :- P(a, b), P(b, c).

Q(X = a, c)

Figure 5: A Datalog specification with a query (left) and a proof trace (right).

dependencies, e.g., by creating the Compute objects in the right order.225

Finally, Compute objects can be connected to one or more subnetworks. This be-
havior is modeled by the Port class that defines a generic network port for connecting
to a subnetwork. Each port can also carry a (fixed) IP address specified in the address
and netmask properties. In the diagram, the db_Server_port and www_DMZ_port are
instances of the Port class and connect the db and www server to the two subnetworks230

with addresses 192.168.2.100 and 198.51.100.5, respectively.

3.3. Datalog

Datalog [11] is a declarative logic programming language which enjoys efficient
algorithms for query resolution. A Datalog specification consists of a list of facts and
clauses. A fact Ppa1, . . . , anq states that a predicate P is satisfied by the elements of235

a tuple pa1, . . . , anq. A clause T:-T1, ..., Tn states that a term T can be inferred from
the terms T1, ..., Tn, called the premises of the clause. Terms are also predicates, but,
unlike facts, they can contain variables, e.g., A, B, X, . . .

A Datalog query T? is evaluated by an engine, i.e., a solver, against a specification
to decide whether T is entailed by the given facts and clauses in the specification. When240

this is the case, the Datalog engine returns the list of facts and clauses, namely the proof
trace, that have been applied to validate the given query.

To exemplify, consider the Datalog specification on the left of Figure 5. The speci-
fication consists of two facts and one clause. Moreover, we append a query at the end
of the specification. The query is valid if an assignment to X can be found that satisfies245

Q(X,c). This is trivially true for the query and a possible proof trace is given on the
right of Figure 5. The proof ends by finding an assignment, i.e., X = a, that satisfies
the query. To obtain this result, the engine applied the (only) clause in the specification
(line 3) by instantiating its variables. The right-hand side of the clause contains the
premises that are available in the initial part of the trace (lines 1 and 2).250

The decision problem for a Datalog query is P-complete in the size of the Datalog
specification [12].9 This ensures that the validation process scales well even with large
specifications.

4. Scenario Definition Language

The design phase aims at generating a suitable blueprint of the scenario, covering255

all the relevant aspects from the infrastructure description to the objectives of the cyber

9The study of the Datalog fragments that admit efficient solvers is an active research field, e.g., see [13].
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exercise. Although the infrastructure has an important role, there are other aspects
to consider when designing a scenario. In general, IaC is not meant to model these
components and must be extended to support them. Our Scenario Definition Language
(SDL) builds on TOSCA [8], a prominent IaC language, but it introduces several new260

elements that we describe in this section. Briefly, we carry out three extensions, i.e.,
piq we define new, scenario-specific node and relationship types, piiq we introduce two
special properties to support the verification and testing process and piiiqwe implement
a novel query language based on access patterns.

4.1. TOSCA integration265

The Topology and Orchestration Specification for Cloud Applications (TOSCA) [8]
is a YAML-based10 OASIS standard language for designing the topology and the life-
cycle of a cloud application. A TOSCA-enabled IaaS provider must have a suitable
TOSCA orchestrator.11 TOSCA implements the concepts of Figure 4 by means of
a rich type system. This will be further discussed in Section 5.2. Briefly, the main270

constituents of TOSCA are the following.
Node types. They define an infrastructure component, e.g., a server or a network, or
a component element, e.g., a software installed on a server. A node type can include
properties, attributes, capabilities and requirements. Properties represent some static,
node-specific feature, e.g., the hostname. Attributes resemble properties, but they are275

used to store a value that is set by the orchestrator after the instantiation, e.g., think of a
dynamically assigned IP address. Requirements and capabilities define what the node
needs and (optionally) provides to the others. Requirements and capabilities mainly
serve as the joints for the relationships (see below).
Relationship and capability types. They are used to connect nodes and, as it happens280

for node types, can include properties and attributes, e.g., the credentials for the authen-
ticated service exposed by the node we are connecting. A relationship has a direction,
and it connects the requirement of a source node to the capability of a target node.
Moreover, each requirement can put a constraint on the types of both the target node
and capability. For instance,12 a WordPress web application requires to connect to piq285

a database piiq endpoint, i.e., a network database. To model this, the WordPress node
includes a requirement database_endpoint. The database_endpoint requirement con-
strains the type of the target node to be Database and the type of the target capability
to be Endpoint. These two constraints capture piq and piiq, respectively.
Interfaces. Nodes and relationships may have interfaces. An interface defines a custom290

operation to be invoked by the orchestrator. Two kinds of interfaces exist, i.e., standard
and on demand. A standard interface defines a task related to the life-cycle phases of
a node (e.g., create, start, and stop). For instance, one can add a standard, create
interface to a compute node to ask the orchestrator for installing a certain software

10http://yaml.org
11Existing TOSCA-enabled orchestrators often accept a slightly extended version of the TOSCA stan-

dard, i.e., a TOSCA dialect. If not differently stated, the examples in this paper refer to the ARIA TOSCA
dialect [14].

12See [8] for more details.
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Figure 6: An excerpt from the (TOSCA-style) diagram for the working example.

package when the node is created. Instead, on-demand interfaces introduce new tasks.295

The orchestrator permits to invoke the tasks through the definition of a new workflow.
For instance, the on-demand interface can be used to implement an application-specific
logic (see [15, § 7.3.2]).

A node template is a specification of a cloud application obtained through the com-
position of the elements mentioned above. In particular, each element is obtained by300

instantiating its base, namely normative, type. Roughly speaking, the TOSCA norma-
tive types provide a set of primitive classes (see Figure 4). Designers can define their
own types by extending the normative types. As discussed in [16], the type inheritance
enables some well-know mechanisms, e.g., type substitution and reuse, that simplify
the design process.305

Example 1. Consider the diagram depicted in Figure 6. It is an excerpt of the spec-
ification for the working example introduced in Section 2. In particular, it specifies
the infrastructure of the web server (www) and the hosting network (DMZ). The www
server runs on a virtual machine, an instance of the Compute node type. The hard-
ware configuration of www and its operating system image are set by using the flavor310

and image properties, respectively. The DMZ network is an instance of the Network
node type. A DMZ subnetwork, instance of Subnetwork node type, is in relationship,
DependsOn, with the DMZ network and allows to specify its block of IP addresses
in the cidr property. Moreover, the DMZ subnetwork provides the Bindable capabil-
ity for supplying connections to the DMZ network. The www connectivity is rep-315

resented by www_DMZ_port, an instance of the Port node type which also includes
the fixed_ip property for assigning a fixed address to the connected node. The node
www_DMZ_port is the source of two relationships, namely BindsTo and LinksTo. The
former connects the Bindable requirement to the Bindable capability of the Compute
node www. The latter connects the Linkable requirement to the Bindable capability of320

the DMZ_subnet Subnetwork node.
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1 www:
2 type: Server
3 properties:
4 image: ubuntu1604
5 flavor: medium
6 requirements:
7 - port: www_DMZ_port
8 www_DMZ_port:
9 type: Port

10 properties:
11 fixed_ip: 198.51.100.5
12 requirements:
13 - network: DMZ
14 - subnet: DMZ_subnet

15 DMZ:
16 type: Network
17 DMZ_subnet:
18 type: Subnet
19 properties:
20 subnet:
21 cidr: 198.51.100.0/24
22 requirements:
23 - network: DMZ

Figure 7: An excerpt of the TOSCA specification for the working example.

The syntax of the TOSCA language is YAML-based.13 Node instances are col-
lections containing piq the entity type, piiq a key-value dictionary of properties, and
piiiq a list of requirement bindings. A relationship between two nodes exists when a
requirement of a source node instance is bound to the name of the target.325

Example 2. Consider the YAML specification given in Figure 7. It is the TOSCA
encoding of the diagram of Figure 6. Node www (line 1) represents the compute en-
tity for the web server. It is an instance of the aria.openstack.nodes.Server
(line 2) type, i.e., a subtype of tosca.nodes.Compute denoting a virtual machine
that runs on an OpenStack IaaS. 14 This node contains two properties: the name of330

the base operating system image (line 4) and the flavor (line 5) of the virtual machine.
A port requirement (line 7) permits to establish a relationship with the Port node
www_DMZ_port (line 8). The port assigns a fixed IP address to the virtual machine
using the property fixed_ip (line 11). Also, the port is related with the DMZ Network
node (line 13) and DMZ_subnet Subnet node (line 14). The IP addressing configu-335

ration of DMZ_subnet is specified in the subnet property (line 20).

4.2. SDL types

SDL introduces a number of new node types. Their primary purpose is to model
the scenario specific aspects and to integrate them in a TOSCA blueprint. Below we
introduce the most relevant ones.340

System types. The type System represents the base class of a generic system of the
scenario (e.g., workstations, servers, smartphones). Each System node is associated
(through a relationship) with an existing TOSCA Compute node. The Compute
node is the virtual machine where the System runs.

13http://yaml.org
14For brevity we may omit namespaces such as aria.openstack.nodes.
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Subtypes of System are used to model more specific elements. For instance,345

Firewall represents a System node with firewall functionalities. In particular, it
is characterized by a default policy, e.g., allow all the traffic passing through its net-
work interfaces (default: allow). It has the capability Rule that enables a relationship
with the Policy nodes. Briefly, a Policy node defines a firewall rule through the
specification of a traffic pattern. The pattern is represented by the properties source,350

destination, protocol, and port. The meaning is that the associated firewall
has to block the connections matching the pattern.15

A System node can can also be related to some Artifact, Software and
User. An Artifact node denotes a file or some other piece of data, e.g., a crypto-
graphic key. A Software node represents a program installed on a the System. It355

may provide a service endpoint (specifying a port and protocol) if it is network acces-
sible. Also, a relationship with a User defines the running privileges of the software.
Finally, a User node models a user of the System through a requirement Host. Its
properties include its username, password, and role (denoting its privileges in
the System).360

All the types introduced above include a capability denoting the fact that they can
be involved in some vulnerability (see below). For instance, a software can suffer from
a known security flaw, while a user can have a weak password.

Scenario-specific types. The Vulnerability type is perhaps the most interesting
element in our context. As a matter of fact, it represents a generic, security vulnerability365

involved in the scenario. Precisely characterize the notion of vulnerability is not trivial
and many definitions exist.16

In our context, a vulnerability is any security weakness introduced by some (mis)
configuration. As discussed above, vulnerabilities may refer to any system type in
the scenario. Moreover, they must specify the configuration procedure, i.e., the steps370

injecting the vulnerability in the scenario, and the exploit operations, i.e., how the at-
tacker uses the vulnerability. Its properties and relationships with the scenario elements
vary with the specific vulnerability. Since vulnerabilities are extremely heterogeneous,
we do not put further constraints on their structure.

A Principal represents a subject operating in the scenario. For instance, attack-375

ers (red team) and defenders (blue team) are principals. Typically, a Principal has
a relationship with some User nodes representing the accounts initially controlled.
The objective of a Principal is to achieve its Goals. This is specified through a
relationship between the two nodes. A Goal represents a state of the scenario that
identifies the winning conditions of the related Principal, e.g., gain access to a cer-380

tain system. A detailed discussion on the role of Goal nodes is given in Section 5.2.

Relationship types. SDL also introduces new relationship types. The primitive rela-
tionship types of TOSCA model the infrastructural dependencies only. For instance,
we use HostedOn to connect a SDL System to the TOSCA Compute node hosting

15Actual firewall policy languages can be more complex and the definition of rigorous languages is still
an open research issue, e.g., see [17].

16E.g., see https://csrc.nist.gov/glossary/term/vulnerability.
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Figure 8: A SDL fragment from the specification for the working example.

it. Scenario-specific dependencies, e.g., the one occurring between a vulnerability and385

its attack vector, fall outside the scope of TOSCA. In general, one might use the generic
DependsOn relationship. Yet, this would require to customize each instance of the
relationship with its specific deployment logic (see Section 5.3.1). An alternative to
DependsOn is to define new relationship types that commonly occur in the scenar-
ios. For instance, a relationship GetsUsername can connect a Vulnerability390

node to a User node. The meaning is that the Vulnerability node reads the
username property of the User node and uses it for the configuration of the vul-
nerability. To exemplify, think of a user enumeration vulnerability where an attacker
enumerates the users of a service by testing a dictionary of common usernames. To
properly configure it, one has to make sure that the target username belongs to the395

dictionary.

Example 3. The SDL diagram in Figure 8 extends the TOSCA specification of Ex-
ample 1 by adding some elements of Scenario 1 (see Section 2). In particular, here
we only consider vulnerability 4 and we assume that the red team already knows the
credentials to remotely access as an unprivileged user. The www_system node repre-400

sents the Linux system running on the Compute node www. The User node alice
is hosted on the Linux system. The properties of alice define its username, pass-
word, role (where user stands for a standard, unprivileged user). Similarly, root
models the administrator of www_system. Like alice, root has a username and
a role, i.e., admin. However, by not setting the password property, we model the405

14



1 User:
2 derived_from: Root
3 properties:
4 username:
5 type: string
6 required: yes
7 password:
8 type: string
9 role:

10 type: string
11 default: user
12 constraints:
13 - valid_values:
14 [ admin, user ]
15 capabilities:
16 vulnerability:
17 type: VulnerabilityContainer
18 [...]

19 User.Linux:
20 derived_from: User
21 [...]
22 Vulnerability.Linux.EoP:
23 derived_from:
24 Vulnerability.Linux
25 requirements:
26 - fromUser:
27 capability:
28 PrivilegeProvider
29 relationship:
30 GetsUsername
31 node: User.Linux
32 - toUser:
33 capability:
34 PrivilegeProvider
35 relationship:
36 GetsUsername
37 node: User.Linux
38 [...]

Figure 9: An excerpt of SDL node types declaration.

passwordless,17 default configuration of the Ubuntu Linux distribution (defined by the
www node in Example 1).

The www_vuln1 node represents the EoP vulnerability discussed in Section 2. Its
type is Vulnerability.Linux.EoP and it has two requirements, i.e., fromUser
and toUser. Respectively, they connect to the unprivileged and the privileged users.410

Such a connection occurs through the GetsUsername relationship.
A Principal node eve represents the attacker (red team). It is related with

alice, i.e., the account initially controlled by the attacker. Finally, the goal node
is related to eve and it represents the objective of the attacker. It is an instance of
the goal.GainPrivilege type and it has two requirements, namely principal415

and privilege, meaning that the connected Principal (namely eve) aims at
acquiring the privileges of the connected User (namely root). Notice that this is
not the final goal of Scenario 1 (i.e., reading the content of the database). It is an
intermediate goal only, that is a sub-goal enabling the final one, that we consider here
for the sake of presentation.420

In Figure 9 we give the type declaration of the the node types related to the vulner-
ability introduced in the SDL diagram. The User type (lines 1-18) represents a SDL
primitive and inherits from the root of all the SDL types, namely sdl.nodes.Root.
It has three properties: username, is a mandatory string identifying the user in the
system, password, an optional string representing the user’s password, and role425

representing the user’s privileges. Two roles are modeled in the example, i.e., admin
and user (line 13-14). An unspecified value for the role property implies a user role
(line 11). Moreover, User has the capability vulnerability

17https://help.ubuntu.com/community/RootSudo
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The specific type for Linux users, namely User.Linux (lines 19-21), inherits
from the User type described above. It mainly denotes a class of users we need for430

constraining nodes requirements (line 31 and line 37).
The type Vulnerability.Linux.EoP (lines 20-36) derives from Vulnera-

bility.Linux. It contains the fromUser and toUser requirements described
above. They both specify VulnerabilityProvider as capability and linux
.User as type for the target node and use GetsUsername as relationship type.435

4.3. Behavior and runtime
All the SDL node and relationship types have two special properties, i.e., behavior

and runtime. Intuitively, runtime is associated with commands, for instance shell
scripts, to be executed. Such commands are mostly used for the testing phase (see
Section 5.3.2). Instead, behavior properties contain terms used for the validation440

process (see Section 5.2). Both runtime and behavior properties are given as finite
mappings between unique identifiers and commands and terms, respectively. More-
over, we require the two mappings to have exactly the same domain. Differently said,
the runtime maps an identifier to a command if and only if the behavior maps the same
identifier to a term. These aspects are detailed in Sections 5.2 and 5.3.2.445

4.4. Access pattern language
TOSCA natively provides operations, called intrinsic functions, to access the infor-

mation stored inside a node [15, § 4.3]. For instance, a node n can use get_property:
[r,p] to read the value assigned to property p by the node related to n through the
requirement r. Notice that intrinsic functions can only walk through a single relation-450

ship. This is reasonable for the design of an infrastructure, where each node is related
to the others it depends on. However, it makes extremely hard to model complex de-
pendencies such as those introduced by the behavior property of vulnerabilities and
goals. The motivation is that, for instance, a goal can be related to nodes that are very
far in the blueprint.455

For this reason we introduce an access pattern language to specify structured, path-
based queries. An access pattern ρ follows the syntax below.

ρ ::= π[P] | π{A}
π ::= πnod | πrel | πcap
πnod ::= this | πrel.src | πcap.node
πcap ::= this | πnod<-C | πrel.dst
πrel ::= this | πnod->R | πcap.rel

An interpreter evaluates and replaces an access pattern ρ with a set18 of values
according to the target SDL specification. In particular, π[P] amounts to the value of460

property P of the SDL elements pointed by π (therefore called a pointer).19 Similarly,

18Since SDL relationships can be many-to-many, the evaluation of an access pattern is not guaranteed to
result in a single value.

19For brevity, we may omit [P] when P = name.
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π{A} reduces to the value of the attribute A of the elements pointed by π. A pointer
π can be of three kinds depending on the class of the SDL elements it refers to, i.e.,
nodes (πnod), relationships (πrel) or capabilities (πcap).20 Each element can use this
as a self-pointer.21 A node pointer πnod is also obtained by means of the operator465

.node applied to (a pointer to) a capability contained by the node. A pointer to a
capability C is obtained by applying the operator <- to a node pointer. Moreover, from
a relationship pointer πrel one can access the destination capability by means o f the
operator .dst. Conversely, a pointer to a relationship can be obtained either piq from
a node pointer πnod by means of the requirement R where the relationship originates470

(operator ->R) or piiq from a capability through the operator .rel. For the sake of
presentation we also introduce the following abbreviations.

πnod=>R ” πnod->R.dst.node πnod<=C ” πnod<-C.rel.src

Example 4. Consider the following access patterns defined by node eve (see Fig-
ure 8).475

this[name] this->knowledge[name] this=>knowledge[role]

The first pattern trivially evaluates to eve. The second one requires to access prop-
erty name of the relationship originating from the requirement knowledge, i.e.,
GetsCredentials. Finally, the last access pattern follows the relationship origi-
nating from knowledge and points to node alice whose property role is assigned480

to user.

5. Introducing CRACK

In this section, we present our framework CRACK. We start in Section 5.1 by
providing a general description of its structure. Then we detail the main constituents,
i.e., its specification language, the scenario validation and automatic testing process.485

5.1. Overview of the approach

Figure 10 depicts the abstract workflow of CRACK. The scenario development
workflow starts with the modeling task. During this task, the designer creates a blueprint
of the scenario by using SDL (see Section 4). The model is then type checked to de-
tect possible inconsistencies. If it is the case, type errors are returned to the modeling490

task to be fixed. Otherwise, the process proceeds to the verification task. In the cur-
rent implementation, CRACK generates a Datalog specification from the model and
feeds it to a Datalog engine (see Section 5.2). We stress the fact that our approach can
be extended with other verification techniques. To support this operation, CRACK is
based on a modular design. If the Datalog verification fails, the unreachable goals are495

returned to the design process, otherwise a proof trace for each goal is generated and

20Notice that requirements cannot declare properties in TOSCA.
21We omit it when clear from the context.
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Figure 10: CRACK general workflow.

the process moves to the infrastructure initialization task. When the infrastructure is
up and running, CRACK performs the test execution phase (described in Section 5.3).
This task converts the proof traces into unit tests and executes them on the deployed
infrastructure. If a test fails, a feedback is provided to the user in order to refine the500

scenario blueprint. Eventually, when all the tests are passed, the scenario is ready to be
played.

5.2. Scenario Validation

SDL inherits the TOSCA type system (cf. Section 4.1). A well-typed blueprint
enjoys some properties of interest, such as the coherence between nodes and relation-505

ships [18]. Although efficient, type checking cannot verify more complex properties.
To overcome this limitation, we introduce a further verification phase that converts a
well-typed SDL model into a Datalog specification (see Section 5.2.1). Objectives are
then encoded as queries that must be satisfied by the specification.

A successful verification yields as a set of proof traces, one for each objective.510

Proof traces are later used as input to the deployment and testing phases (cf. Sec-
tion 5.3). Interestingly, a verification failure is also useful: invalid queries can be
productively used (e.g., see [19]) to identify bugs in the model that originated the spec-
ification.

5.2.1. Encoding515

The encoding process generates a Datalog specification from a scenario blueprint.
The Datalog terms refer to a set of predefined predicates. Some predicates are inspired
by [20]. The most relevant ones are listed in Table 1.

Facts and clauses belong to three blocks, i.e., constants, behaviors and goals. Con-
stants include Datalog terms that model the standard behavior common to any infras-520

tructure. For instance, the clause

hasAccount(A,H,U) :- hasUser(U,H,P,R), knows(A,U), knows(A,P).

means that principal A owns account U on host H if user U exists on H and A knows
both U and the associated password P.
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Table 1: Predefined Datalog predicates (excerpt).

Predicate Description
knows(A,D) Principal A knows datum D (e.g., a password)
hasAccount(A,H,U) Principal A has an account on host H as user U
hasUser(U,H,P,R) Host H has user U with password P and role R
listeningOn(H,Q,S) Host H has a software on port S with protocol Q
isConnected(H,N) Host H is connected to network N
hostACL(H,K,Q,S) Host H can access host K via protocol Q on port S

Behaviors blocks contains the terms introduced by the SDL elements through the525

behavior property (see Section 4). The behavior property consists of a mapping be-
tween identifiers and term patterns. A term pattern resembles a standard Datalog term,
i.e., a fact or a clause, but its parameters can also be access patterns (see Section 4.4).

Example 5. Consider the SDL fragment of Example 3. We show the Datalog term
generated by the EoP vulnerability. Let assume that www_vuln1 has the following530

behavior property.
hasAccount(A, H, =>ToUser) :- hasUser(=>ToUser, H, P1, R1),

hasUser(=>FromUser, H, P2, R2),
hasAccount(A, H, =>FromUser).

The term above models the vulnerability prerequisites (clause premises) and effect. In535

practice, the vulnerability allows a principal A to obtain the control over a target high-
privileged user =>ToUser22 by leveraging a misconfiguration. In particular, the mis-
configuration has to do with a low-privileged user =>FromUser that can impersonate
=>ToUser when launching a certain command. For this to happen three conditions
must be satisfied.540

iq The high-privileged account =>ToUser exists on the target system.
iiq A low-privileged account =>FromUser also exists on the target system.
iiiq Principal A has control over the low-privileged account.

Similarly, the behavior property of the relationship GetsCredentials is defined as
follows.545

knows(.src, .dst.node[password])
knows(.src, .dst.node[username])

Finally, also the nodes of type User.Linux, i.e., alice and root, define a term
pattern in their behavior property.

hasUser(this[username],=>System,this[password],this[role])550

According to the specification of Example 3, all the above term patterns contribute to
the following Datalog specification.

22Recall that this is an abbreviation for this=>ToUser[name].

19



/* Constants */
hasAccount(A,H,U) :- hasUser(U,H,P,R), knows(A,U), knows(A,P).
/* EoP vulnerability */555

hasAccount(A, H, root) :- hasUser(root, H, P1, R1),
hasUser(alice, H, P2, R2),
hasAccount(A, H, alice).

/* GetsCredentials */
knows(eve, 9JmDGEr4).560

knows(eve, alice).
/* root */
hasUser(root, www_system, , admin).
/* alice */
hasUser(alice, www_system, 9JmDGEr4, user).565

Finally, the SDL goals result in queries to be evaluated against the Datalog model.
Such queries denote that a certain configuration is reachable in the scenario.

Example 6. Consider the node goal of Example 3. Its behavior property contains the
term hasAccount(=>Principal, =>Privilege=>System, =>Privilege)?570

which reduces to the query hasAccount(eve, www_system, root)?.
Notice that, in this particular example, the goal query contains no free variables.

Thus, its evaluation results in a plain boolean value.

5.2.2. Verification
The verification process boils down to running a Datalog engine against the goal575

queries. The verification fails when one or more queries cannot be satisfied. In such a
case, the failure denotes that a principal cannot achieve one of its goals.

Example 7. Consider again the Datalog specification of Example 5 and the query of
Example 6. The query is trivially satisfied by the specification. The generated proof
trace is as follows.580

1. hasUser(root, www_system, , admin). /* Fact */
2. hasUser(alice, www_system, 9JmDGEr4, user). /* Fact */
3. knows(eve, alice). /* Fact */
4. knows(eve, 9JmDGEr4). /* Fact */
5. hasAccount(eve, www_system, alice) :-585

hasUser(alice, www_system, 9JmDGEr4, user), /* From 2 */
knows(eve, alice), /* From 3 */
knows(eve, 9JmDGEr4). /* From 4 */

6. hasAccount(eve,www_system,root) :-
hasUser(root, www_system, , admin), /* From 1 */590

hasUser(alice, www_system, 9JmDGEr4, user), /* From 2 */
hasAccount(eve, www_system, alice). /* From 5 */

We discuss the steps of the proof trace in backward order. The last step (6) con-
cludes the proof by inferring the goal query. The proof step consists of an application
of the clause introduced by the EoP vulnerability (see Example 5). To apply the clause,595

three preconditions must be satisfied. Two of them amount to facts appearing in the
specification (i.e., 1 and 2), thus requiring no further proofs. Instead, the last one is
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[...]
38: interfaces:
39: standard:
40: configure:
41: implementation: /scripts/eop-apt-config.sh

Figure 11: Extended YAML declaration of the EoP vulnerability.

inferred by applying the clause of the constants block (see Example 4). The infer-
ence step (5) is based on three premises, i.e., 2, 3 and 4. Since all of them are facts
appearing in the specification, the proof is completed.600

5.3. Deployment and testing

Once validated, a blueprint can be instantiated and executed. In general, the de-
ployment process is not guaranteed to preserve the model-validated properties. As a
matter of fact, the abstract, high-level design purposely neglects some implementation
aspects that may affect the scenario at runtime. For instance, a piece of software may605

behave differently from the expectations of the scenario designer.
To favor a prompt detection and debugging of the scenario, we leverage the verifi-

cation proof traces to automatically generate and run tests (see Section 5.3.2). Each test
aims at confirming that a model-validated property also holds in the deployed scenario.

5.3.1. Deployment610

The deployment phase generates the directives for the IaaS provider. Many so-
lutions exist for the interpretation/translation of the TOSCA specifications into the
orchestration instructions of the major IaaS provider (e.g., see Cloudify [21], ARIA
TOSCA [14], OpenTOSCA [22], Alien4Cloud [23] and Heat-Translator [24]). All
of them only apply to the standard TOSCA. Clearly, to support our SDL we could615

customize one of them. However, this would make SDL incompatible with the other
existing TOSCA implementations.

To avoid the customization and preserve the compatibility with the existing TOSCA-
based technologies, we rely on the TOSCA interfaces (see Section ??). In particular, for
all the SDL node types we declare a standard interface. Recall that all of the SDL types620

have some relationship (either direct or indirect, i.e., through a relationships path) with
one TOSCA Compute node (see Section 4.1). Such relationship is resolved at runtime
to identify the platform where the interface task must be executed. Thus, all the tasks
defined by our standard interfaces result in a configuration command to be executed on
a certain TOSCA Compute node. To clarify we propose the following example.625

Example 8. Consider again the EoP vulnerability (node www_vuln1) of Example 3.
Figure 11 shows the continuation of the declaration of linux.vulnerability.EoP
(given in Figure 9). Clearly, the vulnerability must be enabled by properly configuring
www, i.e., the Compute node where the privilege escalation takes place. In this case,
the node www is identified as the system hosting the User nodes (namely, fromUser630

and toUser) related to the vulnerability.
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#!/bin/bash

# read username attributes
fromUser= #...
toUser= #...

echo "$fromUser ALL=($toUser) NOPASSWD: /usr/bin/apt-get" >> /etc/sudoers

Figure 12: Implementation of eop-apt-config.sh.

Figure 13: The Test Execution Engine of CRACK.

The implementation of the interface is given through a shell script (line 41). We
report a core operations of the script in Figure 12. Briefly, the script enables a spe-
cific implementation of the EoP vulnerability for Debian-based OS. The vulnerability
is activated through a misconfiguration of the /etc/sudoers file that allows un-635

derprivileged users to invoke the Debian package manager apt-get in passwordless
mode.23 In particular, the script retrieves the usernames of the two users. Usernames
are obtained by reading the corresponding SDL attributes which contain actual, runtime
values. Then, the vulnerability is enabled by appending the vulnerable configuration
line to /etc/sudoers.640

5.3.2. Testing
All in all, the test execution process consists of translating a Datalog proof trace

into an executable test and run it on the deployed scenario. The testing process is
handled by a Test Execution Engine (TEE).

Figure 13 schematically depicts the TEE and its relationship with a running sce-645

nario. The test execution proceeds in this way. The next fact F pv̄q, namely the Fact
Under Test (FUT), in the input Datalog trace is extracted and given to a trace inter-
preter. The interpreter retrieves a test driver, i.e., a script specifically designed to test
facts referring to the predicate F , from an internal database. The test driver has a
predefined interface and it may refer to values take from either the FUT, the scenario650

blueprint or runtime information generated by the test execution and stored in a test
database. The structure of the test database is straightforward. In particular, it consists
of a table for each Datalog predicate where each column corresponds to a parameter.

23https://attack.mitre.org/techniques/T1169/
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ū := get_values_from_fut()
v̄ := get_values_from_blueprint()
w̄ := get_values_from_testdb()

sut := get_sut_from_blueprint()
test := get_runtime_from_blueprint(sut, fut)
insert_values_in_script(test, ū, v̄, w̄)
r := submit_script_to_iaas(sut, test)

if(is_not_successful(r)) then test_failed()
else insert_values_in_testdb(r) and test_passed()

Figure 14: Test driver pseudo-code.

Notice, however, that actual, runtime values may be considered when they simplify the
testing operations. For instance, one might prefer to store the actual username of a user,655

rather then its SDL identifier as it appears in the Datalog trace (see Example 9).
The general structure of a test driver is given in Figure 14. Each driver starts by

retrieving the necessary data from the FUT (ū), the blueprint (v̄) and the test database
(w̄). Then it identifies the system under testing (SUT) by checking which SDL node
declares the FUT in its behavior. Similarly, the test driver retrieves the correspond-660

ing test script from the runtime property of the SUT. Before running the script, the
actual test values must be inserted, i.e., passed as the input parameters of the script.
Eventually, the script is submitted to the IaaS provider that executes it on the SUT and
returns the output values. The output is a tuple on which a successful condition can be
checked. If the check is not passed the test fails, otherwise the driver inserts the output665

values in the test database and terminates.

Example 9. Consider again the EoP vulnerability of our working example. Its runtime
property contains the script of Figure 15.

The script starts by reading the inputs provided by the test driver (lines 6–9). For
this purpose a utility function is used (getParam, line 3). There are four inputs passed670

by the driver. Two of them, i.e., principal and host, are taken from the FAU. In-
stead, username is taken from the corresponding attribute of the node User. The
reason is that the script requires the actual username, rather than the User node iden-
tifier (which appears in the proof trace). The last parameter is the knowledge of the
principal, i.e., the content of table Knowledge (for the current principal) in the test675

database. All in all, the script checks if the principal’s knowledge contains a username
that enables the exploitation, i.e., escalating the privileges. In details, the main body
of the script amounts to a for loop iterating on each element k of knowledge (line
11). Then, through a regular expression matching (line 13), the script checks if the
configuration file /etc/sudoers contains a line piq starting with (username) k, piiq680

containing the keyword NOPASSWD, i.e., indicating the passwordless command execu-
tion mode, and piiiq containing the exploitable command apt (see Example 8). If the
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1. #!/bin/bash
2. # Test driver for hasAccount(principal, host, user)

3. function getParam() {
4. # parses and reads the input tuples ū, v̄, w̄
5. }

6. principal=$(getParam $1) # the principal
7. host=$(getParam $2) # the host
8. username=$(getParam $3) # user’s username
9. knowledge=$(getParam $4) # principal’s knowledge

10. r=""
11. for k in $knowledge
12. do
13. if [ "$(grep -P "^$k.+NOPASSWD.+apt.+" /etc/sudoers)" ]; then
14. r=$(su $k -c ’sudo /usr/bin/apt-get update \
15. -o APT::Update::Pre-Invoke::="id"’ | grep $username) && break
16. done

17. if [ ! "$r" ]; then
18. username=""
19. fi

20. echo "($principal, $host, $username)"
21. # is_not_successful() iff $username == ""

Figure 15: Runtime script used to test the EoP vulnerability.

match occurs, the script executes the exploit (line 14) as the user k (su $k -c). The
EoP exploit leverages a configuration option (APT::Update::Pre-Invoke::)
for invoking arbitrary commands before updating the apt package index file. In par-685

ticular, the script invokes the command id for printing the username of the current user.
If the output matches username, i.e., the privileged user, the for loop breaks and r is
assigned to the command output (lines 14–15). After the loop, r is left empty only if
the script failed in running the exploit. Hence, the script overwrites username with
en empty string (line 17-19). Eventually, the script returns the tuple (principal,690

host, username) (line 20). The driver checks whether the script failed by com-
paring username with the empty string.

A test is successful when each step succeeds. In this case, we obtain an evidence
that the proof trace has been preserved after the scenario deployment. Otherwise, we
get a useful indication of what went wrong. In particular, a test failure amounts to the695

failure of a certain script. By reversing our mapping, we find which clause, appear-
ing in the proof trace, is not satisfied by the deployed scenario. As a consequence,
the blueprint can be inspected to understand and fix the error. When all the tests are
successful the scenario is ready.
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6. CRACK Demo700

In this section, we provide a demonstration of CRACK applied to our working
example. CRACK is available as a free open source software on GitHub24. The repos-
itory contains piq the source code, piiq the configurations and piiiq the library of SDL
elements required for replicating the experiments described below. In particular, the
SDL implementation consists of 56 node types, 20 capabilities and 11 relationships.705

All together, they amount to 3411 YAML lines of code (loc) for the type definitions,
1084 shell loc for the deployment interfaces and 500 shell loc for the runtime scripts.

CRACK is built on top of the Apache ARIA project (see Section 5.3.1). In partic-
ular, we rely on ARIA for supporting the design (see Section 4) and deployment (see
Section 5.3.1) phases. Instead, the validation (see Section 5.2) and testing (see Sec-710

tion 5.3.2) phases are enabled through a plugin extension of ARIA. Moreover, we use
pyDatalog25 as the Datalog engine for the verification module.

Our testing environment runs on an Ubuntu Linux, version 16.04.5 LTS, installed
on a two Intel Xeon Processors E5440 server with 32GB of RAM. Finally, we use
DevStack26 for installing OpenStack 3.16.0 (Rocky).715

The outline of the demonstration follows. We start from the design of the first
scenario of our case study in Section 6.1. Then, we validate (Section 6.2), deploy and
test (Section 6.3) the scenario. In Section 6.4 we simulate the red team activity on the
running scenario. Also, there we evaluate the effort for migrating between the first and
the second scenario of the case study.720

6.1. Design
For the first scenario, we carry out the design from scratch. That is, we define all the

elements without assuming any prior scenario design. The design process starts from
the theater elements, e.g., networks and compute nodes, and incrementally proceeds to
the scenario aspects, e.g., vulnerabilities.725

The entire scenario is encoded in 1018 lines of code over 10 YAML files. The files
are structured as follows.

we.yaml # top level of the working example

network.yaml # network infrastructure specification

client.yaml # client host specification

db.yaml # db host specification

firewall.yaml # firewall host specification

ns.yaml # ns host specification

provider.yaml # provider host specification

root-ns.yaml # root-ns host specification

www.yaml # www host specification

config.yaml # input variables

Briefly, we.yaml is the entry point for the scenario specification. This file im-
ports all the other YAML specifications and contains the declarations of the scenario

24https://github.com/enricorusso/CRACK
25https://sites.google.com/site/pydatalog/
26https://docs.openstack.org/devstack/latest/
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Figure 16: The content of wwww.yaml.

principals and goals. In particular, recall that in our scenarios we have only one goal730

for the eve (a.k.a. the red team), i.e., exfiltrating data from db. We use the label
DB_confidential to denote the target data. As a consequence, the goal amounts
to knows(’eve’,’DB_confidential’). The network infrastructure is defined
in network.yaml. Instead, each host is defined in a separate YAML file. A host file
contains the definition of the corresponding Compute node and its configuration. Fi-735

nally, we introduce a utility file config.yaml. Such a file contains values assigned
to common reconfigurable properties, e.g., network addresses, domain names and user-
names. These properties can be modified for quickly reshaping the scenario by acting
on a single file.

Figure 16 shows the YAML specification of www for the first scenario of the work-740

ing example. We start by defining the OpenStack Compute node running www and
its connection to the DMZ subnetwork via www_DMZ_port (lines 1 and 8, respec-
tively). Then, we connect www_system (line 15) to www. As stated in Section 4.2,
www_system enables the relationships with the SDL nodes. For instance, the ssh
server www_ssh (line 25), the Apache27 HTTP server www_http (line 31), the Apache745

module for running PHP28 pages www_php (line 38), and WordPress29 www_cms
(line 44) are software components running on www. Also, we define three users, i.e.,
www_root (line 64), the www_http_user (line 72) and www_user (line 80). Fi-

27https://httpd.apache.org/
28https://www.php.net/
29https://wordpress.org/
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Figure 17: The execution of the validate workflow.

nally, we add one (mis)configuration and three vulnerabilities. Briefly, they implement
they implement the three vulnerabilities introduced in Section 2.750

1. The configuration www_http_userdir (line 89) exposes the users home di-
rectories and the vulnerability www_weak_enumerable (line 97) modifies
the usernames to ensure that they are enumerable (in the sense explained in Sec-
tion 2).

2. The node www_vuln_weakpass (line 104) configures the weak password for755

www_user.
3. The node www_vuln_eop (line 113) injects the EoP vulnerability (see Exam-

ple 8).

At the end of the design step, we submit we.yaml to ARIA. This operation in-
cludes the type checking step (see Section 5.2). When the operation terminates, the760

scenario, called a service in the ARIA terminology, is saved as we_service. Although
the scenario is technically deployable, we still have to validate it with CRACK.

6.2. Validation

CRACK provides a TOSCA workflow, called validate, that implements the valida-
tion procedure described in Section 5.2. We invoke the validate workflow through the765

ARIA workflow execution engine. Figure 17 shows the output for the first scenario of
the working example. The generated Datalog specification in saved as datalog.py
using the pyDatalog format.

Since the test goal is verified (Result: TRUE), the goal1.trace file con-
taining the Datalog proof trace is generated. Also, the workflow creates datalog.json.770

Briefly, it contains a mapping between the Datalog terms and the SDL type declaring
them. Such a mapping binds each FUT appearing in the proof trace with the corre-
sponding SUT during the test execution process (see Section 5.3.2). The mapping is
stored as a list of records of the form

Nat : { "node": SDL node identifier,775

"type": SDL node type,
"key" : Behavior/runtime identifier }
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1. + isConnected (1 , 'www ' , ' DMZ_subnet ' )
2 . + hasUser (2 , ' www_root ' , 'www ' , ' None ' , ' admin ' )
3 . + l isteningOn (3 , 'www ' , ' t cp ' , ' 22 ' )
4 . hasAccount (4 ,A, 'www ' , ' www_user ' ) <= knows ( ID1 ,A, ' a l i c e ' ) &
5 . hasUser ( ID2 , ' www_user ' , 'www ' ,P ,R) &
6. l isteningOn ( ID3 , 'www ' , ' t cp ' , ' 22 ' ) &
7 . hostACL ( ID4 ,K, 'www ' , ' t cp ' , ' 22 ' ) & hasAccount ( ID5 ,A,K,V)
8 . hasAccount (5 ,A, 'www ' , ' www_root ' ) <=
9. hasUser ( ID1 , ' www_root ' , 'www ' ,P ,R) &

10. hasAccount ( ID2 ,A, 'www ' , ' www_user ' )
11. knows (6 ,A, ' a l i c e ' ) <= l isteningOn ( ID1 , 'www ' , ' t cp ' , ' 80 ' ) &
12. hostACL ( ID2 ,K, 'www ' , ' t cp ' , ' 80 ' ) & hasAccount ( ID3 ,A,K,V)
13. + hasUser (7 , ' www_user ' , 'www ' , ' 9JmDGEr4 ' , ' user ' )
14. + l isteningOn (8 , 'www ' , ' t cp ' , ' 80 ' )
15. knows (9 ,A, ' venerus ' ) <= hasUser ( ID1 , ' www_http_user ' , 'www ' ,P ,R) &
15. hasAccount ( ID2 ,A, 'www ' , ' www_http_user ' )
17. knows(10 ,A, ' venerus ' ) <= hasUser ( ID1 ,U, 'www ' ,P , ' admin ' ) &
18. hasAccount ( ID2 ,A, 'www ' ,U)
19. + hasUser (11 , ' www_http_user ' , 'www ' , ' None ' , ' user ' )

Figure 18: An excerpt of datalog.py.

[...]
New fact: hasUser(7,'www_user','www','9JmDGEr4','user')
/* proof of knows(6,'eve','alice') */
New fact: knows(6,'eve','alice')
/* and so on ... */
New fact: hasAccount(4,'eve','www','www_user')
[...]
New fact: hasAccount(5,'eve','www','www_root')
[...]
New fact: knows(10,'eve','venerus')
[...]
New fact: knows(21,'eve','DB_confidential')

Figure 19: An excerpt of goal1.trace.

where Nat is a unique natural number, node is the name of a node in the blueprint,
type is the SDL type of the node and key denotes a valid entry in the behavior/run-
time mapping of the node (see Section 4.3).780

Figure 18 shows an excerpt of the datalog.py file. Briefly, it amounts to the
Datalog facts and clauses generated for www. The syntax follows the pyDatalog format
where facts are preceded by the ’+’ symbol and clauses use ’<=’ and ’&’ in place of ’:-’
and ’,’ (respectively, cf. Section 3.3). Furthermore, notice that each Datalog predicate
has an extra argument, i.e., the first one, being a natural number. Such an argument785

is assigned to a unique constant in each fact and left term of the clauses. Instead, the
argument appears as an unconstrained variable in the premises of each clause. All
in all, this argument maps each step of a proof trace to a corresponding entry in the
datalog.json file (through the values Nat discussed above).

Figure 19 contains a fragment of the proof trace generated by the validate work-790
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flow. For the sake of presentation, we omit the proof details and we only report the
facts proved at each step by the pyDatalog deduction system. The proof succeeds by
achieving the goal, i.e., knows(21,’eve’,’DB_confidential’), at the final
step.

6.3. Deployment and testing795

The deployment process results in the infrastructure depicted in Figure 20. The
infrastructure contains the components discussed in Section 2. It is worth noticing
that the actual topology also includes the networks that were originally only implicitly
defined. For instance, outside that connects firewall to provider.

Another TOSCA workflow of CRACK, called test, executes the test for the proof800

trace of Figure 19. The result is partially reported in Figure 21. The structure of
the test follows the facts of Figure 19, but it refers to actual runtime values. For
instance, the username and password of www_user are dynamically configured by
www_weak_enumerable and www_weak_password to manager and qwerty
(respectively). Finally, notice that the test fails. When this happens, CRACK displays805

the execution log of the failed script for supporting the scenario debugging process.
We now interpret and fix the error that caused the failure of Figure 21. From the

FUT identifier, i.e., 4, we find in datalog.json that the clause was declared by the
node www_weak_password. The corresponding runtime consists of a script running
a dictionary-based brute force over ssh by using Hydra30. From the log we discover810

that the error occurred because the password-based authentication is not enabled on ssh.
The reason is that, by default, ssh is configured only to support key-based authentica-
tion. To solve this issue, one can add the property PasswordAuthentication:
"yes" to the node www_ssh (see Figure 16). Once the property is added, the test
concludes successfully.815

6.4. Execution and evaluation

We now describe the scenario execution by simulating the attack of the red team.
The steps of the attack are depicted in Figure 22. Initially, the red team scans the ma-
chine hosting the home page of ACME Corp (a). Running nmap shows that the server
is open on ports 80 and 22. Then, they run the nmap script http-userdir-enum31 and820

enumerate two users, i.e., backup and manager (b). The next step (c) is brute forcing
the password of manager using hydra and the rockyou32 wordlist (see Section 6.3).
Once the red team has the password, they can log in www as manager (d) and execute
the privilege escalation discussed in Example 8 (e). Finally, they leverage the root
privileges to read the Wordpress configuration file wp-config.php and obtain the825

access credentials to the database (f) which accomplishes the data exfiltration (g).
Some statistics about the working example are reported in Table 2. In particular, for

the two scenarios we provide piq the size of the scenario blueprint (in terms of YAML

30https://github.com/vanhauser-thc/thc-hydra
31https://nmap.org/nsedoc/scripts/http-userdir-enum.html
32https://github.com/danielmiessler/SecLists/tree/master/Passwords
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[...]
Verify: hasUser(7,'www_user','www','9JmDGEr4','user')
Execution of test 'hasUser' on www
with parameters 'manager' 'www' 'qwerty' 'user'
Result: OK
[...]
Verify: knows(6,'eve','alice')
Execution of test 'knows' on www
with parameters 'eve' 'alice'
Result: OK
[...]
Verify: hasAccount(4,'eve','www','www_user')
Execution of test 'hasAccount' on www
with parameters 'eve' 'www' 'manager'
Result: FAILED
Log:
Hydra v8.1 (c) 2014 by van Hauser/THC
[...]
[DATA] attacking service ssh on port 22
[ERROR] target ssh://127.0.0.1/ does not support password authentication.
[...]

Figure 21: An excerpt of goal1-test.log containing a failed test step.

BLUEPRINT SPECIFICATION TEST EXECUTION
# size types size time FUTs time
1 1018 31 142 9.51 108 157.88
2 991 27 138 8.42 92 101.49

34 5 4 1.09 16 56.39

Table 2: Numbers of the two scenarios.

loc and number of node types), piiq the size (Datalog loc) and and time33 (seconds)
for the Datalog specification verification, and piiiq the size (number of FUT) and time830

(seconds) for the test execution. Also, in the last line, we report the differences between
the two scenarios. In particular, for the blueprint we report the number of loc and types
that must be modified to obtain Scenario 2 starting from Scenario 1. It is worth noticing
that this process only requires to add/remove 5 types (16.13%) which is achieved by
modifying 34 loc, that is the 3.34% of the entire blueprint.835

7. Related work

A preliminary version of our SDL appeared in [25]. The present work extends the
previous proposal in a number of ways, being the development of CRACK the main
one.

33Specification and test times include both the generation and the execution of the verification/test engine.
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(a) Connecting to client (via remote desktop) and scanning www.

(b) Enumerating the users. (c) Brute forcing the password.

(d) Accessing www via ssh. (e) Executing the privilege escalation.

(f) Reading the Wordpress configuration. (g) Accessing the database content.

Figure 22: Scenario execution from the perspective of the red team.
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The growing demand for cyber security professionals with hands-on skills is boost-840

ing the development of Cyber Ranges as well as training environments in general.
In [26] Yamin et al. present a survey of Cyber Ranges and security testbeds. There,
they also provide a taxonomy and an architectural model of a generic Cyber Range.
CRACK (see Section 3.1) complies with their architectural requirements. Moreover,
they mention a number of facilities, e.g., random traffic generators, that, although not845

yet implemented in CRACK, are compatible with our proposal.
In terms of exercises executed on a Cyber Range, Locked Shields [1] is possibly

the most famous initiative. It is an annual event relying on a large, complex and het-
erogeneous scenario. The design phase of this exercise is based on a theater which
is updated every year. Both design and testing require the effort of many experts for850

several months, while the execution phase only lasts for a few days. These are the
conditions that inspired our work.

Similarly to CRACK, ALPACA [27] creates complex scenarios according to some
user-specified constraints. In particular, it generates virtual machines containing se-
quences of predefined vulnerabilities which the trainee exploits to achieve a specific855

goal. Interestingly enough, the sequence generation is driven by a Prolog-based AI
engine. Unlike CRACK, since [27] does not include a test phase, there is no guarantee
that the deployed scenario preserves the verified properties.

Vykopal et al. [28] present their experience in organizing an exercise inspired by
Locked Shields. Their main contributions are a lesson learned and a workflow for the860

organizers of the cyber exercises. Their exercises are specifically developed for the
KYPO Cyber Range [7] that also provides a visual design interface. In this paper, we
followed a similar line of reasoning and we proposed a methodology to automatize part
of the workflow of [28]. Unlike [7], we use a standard IaC design language based on
TOSCA. This allows for the integration with several cloud providers.865

ADLES [5], CyRIS [6] and SecGen [29] are tools for the generation and manage-
ment of cyber exercises. All of them introduce their own YAML-based language to
describe the training environment and provide the corresponding module for deploy-
ing it. In particular, [6] also adds few advanced features such as attack emulation and
traffic monitoring. Instead, [29] includes a catalog of vulnerabilities that are randomly870

injected in the generated scenario. Since none of them include a verification procedure,
the generated exercises cannot be validated against general, fine-grained goals.

Both [30] and [31] propose a cyber scenario description language. The language
of [30] provides a fast reconfiguration mechanism for shuffling a list of predefined sce-
narios, e.g., by changing the network address spaces. However, their language does not875

support the construction of new scenarios from scratch as we do with our SDL. Notice-
ably, [31] introduces several concepts that are also present in our SDL, e.g., software,
artifacts, constraints, objectives, and actors. Nevertheless, in [31] these concepts are
only informally stated, while our SDL provides a rigorous and operational definition.

8. Conclusion880

In this paper we presented CRACK, an open source tool for modeling, validating
and testing the scenarios for a Cyber Range. To this aim we proposed the scenario
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definition language (SDL), an extension of TOSCA that introduces several, new fea-
tures. For instance, we defined novel types for modeling, e.g., vulnerabilities and goals,
as well as a Datalog semantics. The Datalog translation enables the validation of the885

scenario and generates proof traces that drive the automatic testing process.
There are several, future directions for this line of research. Among them, we will

investigate the automatic generation of attack/defense strategies. These strategies can
both improve the training process by mimicking the behavior of an attacker/defender in
a simulation. Moreover, we plan to organize real training sessions to test the advantages890

of our approach in the organization of the cyber exercises.
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