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Abstract

Web Application Firewalls (WAFs) are plug-and-play security gateways. They
promise to enhance the security of a (potentially vulnerable) system with
minimal cost and configuration. In recent years, machine learning-based
WAFs are catching up with traditional, signature-based ones. They are com-
petitive because they do not require predefined rules. Instead, they infer their
rules through a learning process.

In this paper we present WAF-A-MoLE, a WAF breaching tool. It uses
guided mutational-based fuzzing to generate adversarial examples. The main
applications include WAF (i) penetration testing, (ii) benchmarking and (iii)
hardening.
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1. Motivation and significance1

Many modern systems expose some web services over the Internet. When2

they are vulnerable, the security of the entire system is compromised. A3

widespread mitigation technique is to deploy a Web Application Firewall4

(WAF). A WAF attempts to detect malicious incoming payloads and drop5

them before they reach their target. Clearly, the ability to craft payloads6

that pass undetected gives a tremendous advantage to attackers.7

WAFs are traditionally signature-based, with a predefined set of rules for8

attack identification. However, this approach lacks generality and requires a9

significant effort to maintain the rule set. For this reason, researchers have10

recently considered the adoption of machine learning (ML). ML-based WAFs11

overcome some of the limitations of traditional WAFs. Their detection rules12

are inferred from a set of payloads through a training process.13
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On the flip side, an aware attacker can take advantage of biases in the14

training set. For instance, the training set might miss some relevant pay-15

loads, so causing blind spots in the classification space. Adversarial machine16

learning [1] studies this phenomenon, i.e., how to craft misleading payloads,17

a.k.a. adversarial examples.18

In this paper we present WAF-A-MoLE, a tool to generate adversarial19

examples for ML-based WAFs. In particular, the current version of the20

tool focuses on SQL injection (SQLi) attacks. WAF-A-MoLE starts from a21

payload and mutates it to bypass a target WAF. The tool relies on a set of22

semantics preserving mutation operators. The mutation process is guided by23

the classification confidence of the target WAF.24

This paper is structured as follows. Section 2 describes WAF-A-MoLE25

and its main functionalities. Section 3 shows an example of how WAF-A-26

MoLE bypasses a target toy WAF. Section 4 highlights the impact of WAF-27

A-MoLE on the security community. Finally, Section 6 concludes the paper.28

2. Software description29

WAF-A-MoLE uses a mutation-based fuzz testing [2] methodology to cre-30

ate attacks that bypass a target WAF. More precisely, WAF-A-MoLE uses31

the classification score of the WAF to guide the fuzzing process by prioritiz-32

ing the most promising payloads. We describe the overall architecture and33

main functionalities of WAF-A-MoLE in the next section.34

2.1. Software Architecture35

WAF-A-MoLE is both a library and a command line tool (obtained by36

means of Click 1 decorators on the main exported functions) implemented37

in Python 3. Figure 1 shows the main workflow of WAF-A-MoLE. Briefly,38

the orchestrator (not shown in the figures) takes an initial payload p0, that39

the target WAF detects as malicious with a confidence score σ0 ∈ [0, 1], and40

inserts it in the initially empty payload Pool. The Pool, in turn, manages a41

priority queue, storing payloads in decreasing ordered of their scores.42

During each iteration, the head of the queue pn is picked from the Pool,43

and passed to the Fuzzer, which randomly mutates pn into pn+1 by apply-44

ing some mutation operators (see Section 2.2). Then, pn+1 is submitted to45

the target WAF for classification. Since we do not expect WAFs to adhere46

to any specific interface, WAF-A-MoLE uses specific adapters that ensure47

1https://click.palletsprojects.com/en/7.x/
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Figure 1: Main workflow of WAF-A-MoLE.

compatibility. The Adapter then returns the classification score σn+1 of pn+1,48

which is fed back into the Pool.49

This cycle finishes successfully whenever the best confidence score σ∗ is50

less than a given threshold, or is interrupted, returning the best pair (p∗, σ∗)51

found so far, because the number of iterations, queue sizes or computation52

time reach their maximum values.53

In order to apply WAF-A-MoLE to different machine learning models,54

without incurring into a tight coupling, we designed an interface, modeled55

in Python as an abstract class called Model, which generalizes the behaviour56

of those models. This class provides two abstract methods, classify and57

extract_features, that need to be instantiated for each kind of model. That58

is, since, no real model matches exactly our interface, for each of them we59

need an adapter class that wraps the target model and exports our Model60

interface (see Figure 1).61

We provide many wrappers out of the box, which are the ones that we62

used for running our experiments. They also serve as examples of how to63

implement new wrappers. In particular, we offer wrappers for two well-known64

frameworks: SklearnModelWrapper for scikit-learn2, and KerasModelWrapper65

for keras3.66

2.2. Software Functionalities67

As discussed in Section 2.1, the main components of WAF-A-MoLE are68

Pool and Fuzzer. The former handles the priority queue and termination con-69

ditions. Although they raise some technical issues (e.g., due to the memory70

usage of large data structures), these aspects belong to the generic context71

of program optimization. Instead, Fuzzer requires more attention.72

2https://scikit-learn.org/stable/index.html
3https://keras.io/
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Following the mutational fuzzing approach, Fuzzer applies a number of73

mutation operators. Mutation operators act on the string representation, and74

they modify the syntax of a payload without altering its semantics. Since we75

focus on SQLi, the currently implemented mutation operators work on SQL.76

We describe them below.77

CS. The Case Swapping operator randomly changes the capitalization of78

keywords in a query (e.g., Select to sELecT).79

WS. Whitespace Substitution leverages the equivalence between several80

alternative separators (whitespaces) between query tokens. For instance,81

alternative whitespaces include \n (line feed), \r (carriage return) and \t82

(horizontal tab). Each whitespace can be replaced by an arbitrary, non-83

empty sequence of whitespaces (e.g., 1 = 1 may become 1\n\t=\r 1).84

CI. The Comment Injection operator randomly adds an inline comment85

(/*...*/) between two query tokens. As whitespaces, inline comments act86

as token separators (e.g., modifying 1 = 1 to 1/**/= 1).87

CR. The Comment Rewriting operator randomly modifies the content of88

a comment. This both applies to inline and trailing (# and -- ) comments89

(e.g., /*abc*/ may become /*xy*/).90

IE. The Integer Encoding operator modifies the representation of nu-91

merical constants. This includes alternative base representations, e.g., from92

decimal to hexadecimal (e.g., 0x2 for 2), as well as statement nesting (e.g.,93

(SELECT 42) for 42).94

OS. Some operators can be replaced by others that behave in the same95

way. For instance, 1 = 1 (equality check) is simulated by 1 LIKE 1 (pattern96

matching).4 We call this mutation Operator Swapping.97

LI. A Logical Invariant operator modifies a boolean expression by adding98

terms that preserve its semantics (e.g., 1 = 1 is equivalent to 1 = 1 AND True).99

In defining our mutation operators, we took inspiration from some mali-100

cious payload samples such as those listed by Awesome WAF5 and Payloads101

All The Things6. All in all, our operators generalize the techniques for pro-102

ducing payloads similar to those mentioned above.103

3. Illustrative Example104

In this section, we provide a demonstration of WAF-A-MoLE applied to a105

toy WAF. The toy WAF assigns a score to a (non-empty) payload p through106

4Notice that, in general, LIKE is not equivalent to =. However, the equivalence holds
when restricting to specific domains, e.g., comparison between integer constants.

5https://github.com/0xInfection/Awesome-WAF
6https://github.com/swisskyrepo/PayloadsAllTheThings
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Op. Mutant σ Op. Mutant σ

WS admin’\t OR\n 1=1# 0.75 CI admin’ OR 1=1/**/# 0.67
CR admin’ OR 1=1#abcde 0.63 IE admin’ OR 0x1=1# 0.75
OS admin’ OR 1 LIKE 1# 0.79 LI admin’ OR 1=1 AND 0<1# 0.68

Table 1: Mutants and classification scores for the toy WAF.

the following function:107

σ(p) = min

{
1,

3 · S(p)

T (p)

}
where S(p) is the number of special characters ’, = and (a single white108

space) and T (p) is the total number of characters in p. For instance109

σ(admin’ OR 1=1#) = min
{

1, 3·4
14

}
≈ 0.86 σ(admin) = min

{
1, 3·0

5

}
= 0110

Assuming the acceptance threshold of the toy WAF to be 1/2 (that is111

p is rejected when σ(p) > 1/2) the first payload above is rejected. Table 1112

reports the σ values of some mutants obtained through the application of the113

operators of Section 2.2.114

Let assume that WAF-A-MoLE generated the payloads of Table 1. They115

are ordered by their σ values and inserted in the payload pool. Then, the116

next mutation round starts from the payload with the lowest σ, i.e., the one117

generated by CR.118

4. Impact119

The impact of our tool on penetration testing activities is straightforward.120

Penetration testers can use WAF-A-MoLE as an off-the-shelf utility to craft121

attacks. For instance, we used WAF-A-MoLE against 9 instances of WAFs122

taken from literature to assess its effectiveness. The results are promising,123

and we provide an excerpt in Figure 2. Briefly, WAF-A-MoLE rapidly de-124

creases the confidence score of the considered WAFs. The plot on the left125

shows how confidence decreases with the number of applied mutations. The126

plot on the right shows how it decreases over time, with a logarithmic scale.127

Since our approach is inherently stochastic, we ran our tool multiple times128

and chose the best run (i.e., the one that reached the threshold in the fewest129

mutation rounds) for each classifier.130

For our analysis, we considered different classifiers:131

1. WAF-Brain7, a deep neural network trained on raw characters contain-132

7https://github.com/BBVA/waf-brain
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Figure 2: WAF-A-MoLE applied to the admin’ OR 1=1# payload

ing legitimate and malicious payloads,133

2. Token-based models [3, 4], implemented using different algorithms,134

built on a histogram of tokens extracted from the queries, and135

3. SQLiGoT [5], a Support Vector Machine (SVM) [6] classifier that rea-136

sons on top of a graph structure extracted from input queries.137

WAF-A-MoLE bypasses WAF-Brain in 7 mutation rounds. Some Token-138

based approaches performed worse than WAF-Brain, Token-based Random139

Forest and Gaussian SVM variants reached the threshold in respectively 2140

and 3 mutation rounds. The Linear SVM and Naive Bayes variants performed141

better, with 24 and 46 rounds. SQLiGoT proved to be the most resilient: one142

of its variants, namely the Undirected Proportional one, reached the thresh-143

old after 134 rounds, and the Undirected Unproportional version needed 290144

steps.145

The full details about our experiments can be found at https://github.146

com/AvalZ/waf-a-mole.147

The by-product of WAF-A-MoLE are adversarial examples [7] for the148

target WAF. Adversarial examples are a cornerstone in adversarial training149

[7, 8, 9]. ML-based WAFs are trained on datasets that very rarely charac-150

terize the entire classification domain. Developers can use the adversarial151

examples to re-train their WAF, covering areas originally not included in the152

training dataset [7, 8, 9]. Intuitively, training the classifier with regular data153

and adversarial examples leads to a more robust model. On the other hand,154

an adversarially trained model loses accuracy w.r.t. its standard counterpart,155
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as the problem to be learned is more complex. Although the methodology156

of [7, 8, 9] is not applied to our working domanin, i.e., SQL payloads, we157

believe that a similar technique can be ported in our context. In this way,158

WAF-A-MoLE can support the WAF hardening process.159

Using WAF-A-MoLE, we showed that ML-based WAFs are vulnerable160

to adversarial attacks. We believe that the main reason is the gap between161

the syntax level (of the WAFs classification) and the semantic level (of the162

vulnerable application). This observation pushes forward an open research163

question: to what extent (syntax-based) WAFs prevent injection attacks?164

WAF-A-MoLE candidates to be a valuable assessment tool to support this165

research line.166

5. Related work167

Machine learning based WAFs. Ceccato et al. [10] propose a clustering method168

for detecting SQL injection attacks against a victim service. The algorithm169

learns from the queries that are processed inside the web application un-170

der analysis using an unsupervised one-class learning approach, namely K-171

medoids [11]. New samples are compared to the closest medoid and flagged172

as malicious if their edit distance w.r.t. the chosen medoid is higher than173

the diameter of the cluster. Kar et al. [5] develop SQLiGoT, an SVM that174

express queries as graphs of tokens, whose edges represent the adjacency of175

SQL-tokens. Pinzon et al. [12] explore two different directions: visualiza-176

tion and detection, achieved by a multi-agent system called idMAS-SQL. To177

tackle the task of detecting SQL injection attacks, the authors set up two178

different classifiers, namely a Neural Network and an SVM. Makiou et al. [4]179

develop a hybrid approach that uses both machine learning techniques and180

pattern matching against a known dataset of attacks. The learning algorithm181

used for detecting injections is a Naive Bayes [13]. They look for different 45182

tokens inside the input query, chosen by domain experts. Similarly, Joshi et183

al. [3] use a Naive Bayes classifier that, given a SQL query as input, extracts184

syntactic tokens using spaces as separators. The algorithm produces a fea-185

ture vector that counts how many instances of a particular word occurs in186

the input query. The vocabulary of all the possible observable tokens is set187

a priori. Komiya et al. [14] propose a survey of different machine learning188

algorithms for SQL injection attack detection.189

Adversarial ML attacks. Among all the techniques proposed in the state-of-190

the-art that leverage on white-box gradient techniques [7, 15, 16], we focus on191

black-box attacks, as they are similar to our method. Ilyas et al. [17] use the192

Natural Evolution Strategy (NES) [18] to guide the creation of adversarial193
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examples against well-known image classifiers. Xu et al.[19] propose a genetic194

algorithm that automatically learns which mutations should be applied to195

PDF malware to bypass a target classifier. Anderson et al. [20] train an196

agent to learn the best sequences of mutations applied to Windows malware197

to fool a target classifier. Chen et al. [21] estimate the target function’s198

boundary locally around a particular input. Then, they guide the generation199

of adversarial examples by computing an approximated gradient using the200

values obtained from the target classifier in that local region.201

6. Conclusions202

In this paper we presented WAF-A-MoLE, a guided mutational fuzzing203

tool to generate adversarial examples for ML-based WAFs. The tool has204

several possible applications, the main one being the security assessment of205

the WAFs.206

There are numerous future directions for this research line. In particular,207

there are three that we consider of primary importance. In the first place,208

we plan to apply WAF-A-MoLE to commercial WAFs. The main difficulty209

is that vendors usually do not share details about the internals of their prod-210

ucts. Hence, this direction requires establishing an agreement with vendors.211

Secondly, we aim at extending our approach to deal with hybrid WAFs that212

also consider payload signatures. For both commercial and hybrid WAFs,213

we would also like to explore the possibility of integrating our tool in a re-214

training process for ML classifiers. Finally, we are interested in finding new215

mutation operators as well as investigating their effectiveness when applied216

alone or combined with others.217
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[2] A. Zeller, R. Gopinath, M. Böhme, G. Fraser, C. Holler, Mutation-224

based fuzzing, in: Generating Software Tests, Saarland University, 2019,225

retrieved 2019-05-21 19:57:59+02:00.226

URL https://www.fuzzingbook.org/html/MutationFuzzer.html227

8



[3] A. Joshi, V. Geetha, Sql injection detection using machine learning, in:228

2014 International Conference on Control, Instrumentation, Communi-229

cation and Computational Technologies (ICCICCT), IEEE, 2014, pp.230

1111–1115.231

[4] A. Makiou, Y. Begriche, A. Serhrouchni, Improving web application232

firewalls to detect advanced sql injection attacks, in: 2014 10th Interna-233

tional Conference on Information Assurance and Security, IEEE, 2014,234

pp. 35–40.235

[5] D. Kar, S. Panigrahi, S. Sundararajan, Sqligot: Detecting sql injection236

attacks using graph of tokens and svm, Computers & Security 60 (2016)237

206–225.238

[6] C. Cortes, V. Vapnik, Support-vector networks, Machine learning 20 (3)239

(1995) 273–297.240

[7] I. Goodfellow, J. Shlens, C. Szegedy, Explaining and harnessing adver-241

sarial examples, in: International Conference on Learning Representa-242

tions, 2015.243

URL http://arxiv.org/abs/1412.6572244

[8] K. Grosse, N. Papernot, P. Manoharan, M. Backes, P. McDaniel, Ad-245

versarial examples for malware detection, in: European Symposium on246

Research in Computer Security, Springer, 2017, pp. 62–79.247

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, A. Vladu, Towards248

deep learning models resistant to adversarial attacks, Sixth International249

Conference on Learning Representations (ICLR).250

[10] M. Ceccato, C. D. Nguyen, D. Appelt, L. C. Briand, Sofia: an auto-251

mated security oracle for black-box testing of sql-injection vulnerabili-252

ties, in: Proceedings of the 31st IEEE/ACM International Conference253

on Automated Software Engineering, ACM, 2016, pp. 167–177.254

[11] L. K. P. J. RDUSSEEUN, Clustering by means of medoids.255

[12] C. I. Pinzon, J. F. De Paz, A. Herrero, E. Corchado, J. Bajo, J. M.256

Corchado, idmas-sql: intrusion detection based on mas to detect and257

block sql injection through data mining, Information Sciences 231 (2013)258

15–31.259

[13] M. E. Maron, Automatic indexing: an experimental inquiry, Journal of260

the ACM (JACM) 8 (3) (1961) 404–417.261

9



[14] R. Komiya, I. Paik, M. Hisada, Classification of malicious web code by262

machine learning, in: 2011 3rd International Conference on Awareness263

Science and Technology (iCAST), IEEE, 2011, pp. 406–411.264

[15] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami,265

The limitations of deep learning in adversarial settings, in: 2016 IEEE266

European Symposium on Security and Privacy (EuroS&P), IEEE, 2016,267

pp. 372–387.268

[16] N. Carlini, D. Wagner, Towards evaluating the robustness of neural269

networks, in: 2017 IEEE Symposium on Security and Privacy (SP),270

IEEE, 2017, pp. 39–57.271

[17] A. Ilyas, L. Engstrom, A. Athalye, J. Lin, Black-box adversarial attacks272

with limited queries and information, in: Proceedings of the 35th Inter-273

national Conference on Machine Learning, ICML 2018, 2018.274

URL https://arxiv.org/abs/1804.08598275

[18] D. Wierstra, T. Schaul, J. Peters, J. Schmidhuber, Natural evolution276

strategies, in: 2008 IEEE Congress on Evolutionary Computation (IEEE277

World Congress on Computational Intelligence), IEEE, 2008, pp. 3381–278

3387.279

[19] W. Xu, Y. Qi, D. Evans, Automatically evading classifiers, in: Proceed-280

ings of the 2016 Network and Distributed Systems Symposium, 2016,281

pp. 21–24.282

[20] H. S. Anderson, A. Kharkar, B. Filar, P. Roth, Evading machine learning283

malware detection, Black Hat.284

[21] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, C.-J. Hsieh, Zoo: Zeroth order285

optimization based black-box attacks to deep neural networks without286

training substitute models, in: Proceedings of the 10th ACM Workshop287

on Artificial Intelligence and Security, ACM, 2017, pp. 15–26.288

Current code version289

10



Nr. Code metadata description Please fill in this column
C1 Current code version v1.0.0
C2 Permanent link to code/repository

used for this code version
https://github.com/AvalZ/

waf-a-mole

C3 Legal Code License MIT
C4 Code versioning system used git
C5 Software code languages, tools, and

services used
Python 3

C6 Compilation requirements, operat-
ing environments & dependencies

Click

C7 If available Link to developer docu-
mentation/manual

https://waf-a-mole.

readthedocs.io/en/latest/

C8 Support email for questions andrea.valenza@dibris.unige.it,
luca.demetrio@dibris.unige.it

Table 2: Code metadata
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