
Noname manuscript No.
(will be inserted by the editor)

Natural Projection as Partial Model Checking

Gabriele Costa · Letterio Galletta ·
Pierpaolo Degano · David Basin · Chiara

Bodei

the date of receipt and acceptance should be inserted later

Abstract Verifying the correctness of a system as a whole requires establishing
that it satisfies a global specification. When it does not, it would be helpful to
determine which modules are incorrect. As a consequence, specification decompo-
sition is a relevant problem from both a theoretical and practical point of view.

Until now, specification decomposition has been independently addressed by
the control theory and verification communities through natural projection and
partial model checking, respectively. We prove that natural projection reduces to
partial model checking and, when cast in a common setting, the two are equiv-
alent. Apart from their foundational interest, our results build a bridge whereby
the control theory community can reuse algorithms and results developed by the
verification community. Furthermore, we extend the notions of natural projection
and partial model checking from finite-state to symbolic transition systems and
we show that the equivalence still holds. Symbolic transition systems are more
expressive than traditional finite-state transition systems, as they can model large
systems, whose behavior depends on the data handled, and not only on the control
flow. Finally, we present an algorithm for the partial model checking of both kinds
of systems that can be used as an alternative to natural projection.

1 Introduction

System verification requires comparing a system’s behavior against a specification.
When the system is built from several components, we can distinguish between
local and global specifications. A local specification applies to a single component,

G. Costa · L. Galletta
SysMA Unit, IMT School for Advanced Studies
E-mail: name.surname@imtlucca.it

P. Degano · C. Bodei
Department of Informatics, Università di Pisa
E-mail: {chiara,degano}@di.unipi.it

D. Basin
Department of Computer Science, ETH Zurich
E-mail: basin@inf.ethz.ch

2 Gabriele Costa et al.

Natural Projection Partial MC

Spec. Lang. FSA [37,24] µ-calculus [1,3]

Theory FSA [37,24] LTS [1,3]

Complexity EXPTIME1 [39,19] EXPTIME [1,3]

Tools TCT [18], IDES3 [35], DESTool [33] mCRL2 [23], CADP [28], MuDiv [2]

Table 1 Summary of existing results on natural projection and partial model checking for
finite-state Labeled Transition Systems. Notice that the algorithm in [39] runs in PTIME on
a specific class of discrete-event systems.

whereas a global specification should hold for the entire system. Since these two
kinds of specifications are used to reason at different levels of abstraction, both
kinds are often needed.

Ideally one aims at freely passing from local to global specifications and vice
versa. Most specification formalisms natively support specification composition
and there are well-studied examples of operators for composing them, e.g., logical
conjunction, set intersection, and the synchronous product of automata. Unfor-
tunately, the same does not hold for specification decomposition: obtaining local
specifications from a global one is, in general, much more difficult.

Over the past decades, many research communities have independently investi-
gated decomposition methods, each focussing on the specification formalisms and
assumptions appropriate for their application context. In particular, important
results were obtained in the fields of control theory and formal verification.

In control theory, natural projection [40] is exploited to simplify systems built
from multiple components, modeled as automata. Natural projection is often ap-
plied component-wise to solve the controller synthesis problem, i.e., for synthesizing
local controllers from a global specification of an asynchronous discrete-event sys-

tem [11]. In this way, by interacting only with a single component of a system, local
controllers guarantee that the global specification is never violated. By composing
local controllers in parallel with other sub-systems, it is possible to implement
distributed control systems [41,42].

The formal verification community proposed partial model checking [1] as a tech-
nique to mitigate the state explosion problem arising when verifying large systems
composed from many parallel processes. Partial model checking tackles this prob-
lem by decomposing a specification, given as a formula of the µ-calculus [27], using
a quotienting operator, and thereby supporting the analysis of the individual pro-
cesses independently. Quotienting carries out a partial evaluation of a specification
while preserving the model checking problem. Thus for instance, a system built
from two modules satisfies a specification if and only if one of the modules satisfies
the specification after quotienting against the other [1]. The use of quotienting may
reduce the problem size, resulting in smaller models and hence faster verification.

Table 1 summarizes some relevant results about the two approaches for finite-
state Labeled Transitions Systems; for more details, we refer the reader to Sec-
tion 6. Since natural projection and partial model checking apply to different for-
malisms, they cannot be directly compared without defining a common framework.
For example, a relevant question is to compare how specifications grow under the
two approaches. Although it is known that both may lead to exponential growth

Natural Projection as Partial Model Checking 3

(see [39,26] and [3]), these results apply in one case to finite-state automata (FSAs)
and in the other case to µ-calculus formulae.

Although decomposition work has been carried out in different communities,
there have also been proposals for the cross-fertilization of ideas and methods [17].
For instance, methods for synthesizing controllers using partial model checking
are given in [7,31]. The authors of [20] and [22] propose similar techniques, using
fragments of the µ-calculus and CTL∗, respectively.

One of our starting points was suggested by Ehlers et al. [17], who advocate
establishing formal connections between these two approaches. In their words:

“Such a formal bridge should be a source of inspiration for new lines of inves-
tigation that will leverage the power of the synthesis techniques that have
been developed in these two areas. [...] It would be worthwhile to develop
case studies that would allow a detailed comparison of these two frameworks
in terms of plant and specification modeling, computational complexity of
synthesis, and implementation of derived supervisor/controller.”

We address the first remark about a formal bridge by showing that, under reason-
able assumptions, natural projection reduces to partial model checking and, when
cast in a common setting, they are equivalent. To this end, we start by defining
a common theoretical framework for both. In particular, we slightly extend both
the notion of natural projection and the semantics of the µ-calculus in terms of
the satisfying traces. These extensions allow us to apply natural projection to the
language denoted by a specification. In addition, we extend the main property of
the quotienting operator by showing that it corresponds to the natural projection
of the language denoted by the specification, and vice versa (Theorem 3.2).

We also provide additional results that contribute to the detailed compari-
son, referred to in the second remark. In particular, we propose a new algorithm
for partial model checking that operates directly on Labeled Transition Systems
(LTS), rather than on the µ-calculus. We prove that our algorithm is correct with
respect to the traditional quotienting rules and we show that it runs in polynomial
time, like the algorithms based on natural projection.

A preliminary version of the above results have been previously presented
in [13], and are systematized and formally proved here.2 In this paper we ad-
ditionally lift these results to symbolic Labeled Transition Systems (s-LTS), a slight
generalization of symbolic FSAs [15], which themselves substantially generalize
traditional FSAs. Roughly speaking, the transitions of an s-LTS carry predicates
rather than letters, as LTS do, and can thus handle rich, non-finite alphabets. In
particular, the alphabet of an s-LTS is the carrier of an effective boolean algebra,
thereby maintaining the operational flavor of transition systems. In the next sec-
tion, we give an example of a concurrent program running on a GPU that shows
the added expressive power of specifications rendered by s-LTSs.

Our lifting of results proceeds in several steps. First we define the notion of
symbolic traces composed by transitions with predicates as labels, and we show
their relationship to the more standard traces labeled by the elements of a given
finite alphabet. More significantly we define symbolic synchronous composition
of s-LTSs, which is crucial for composing these richer system specifications. We

2 In particular, Sections 3 and 4 previously appeared in [13], while Sections 2 and 5, and
the entire Technical Annex are new.

4 Gabriele Costa et al.

then introduce novel symbolic versions of partial model checking and of natural
projection. Also, for the symbolic case, we prove a theorem (Theorem 5.2) that
extends the statement of Theorem 3.2 to the s-LTSs, i.e., that establishes the
correspondence between partial model checking and natural projection for s-LTSs.
Finally, we define a new algorithm for symbolic partial model checking directly on
s-LTSs, and we prove it correct with respect to the symbolic quotienting operator.
As expected, our algorithm’s time complexity is exponential. This is due to the
need to check the satisfiability of the predicates labeling the symbolic transitions.

We have implemented our algorithm for partial model checking on Labeled
Transition Systems in the tool available online [14]. Along with the tool, we de-
veloped several case studies illustrating its application to the synthesis of both
submodules and local controllers. The implementation of the algorithm for s-LTS
is still under development.

Structure of the paper. We start by presenting a motivating example in Section 2.
Section 3 presents our unified theoretical framework for natural projection and
partial model checking as well as its formal properties. In Section 4 we present the
quotienting algorithm, discuss its properties, and apply it to our running example.
We extend our framework to the symbolic transition systems in Section 5. Sec-
tion 5.4 presents our novel symbolic quotienting algorithm. In Section 6 we briefly
survey the related literature and in Section 7 we draw conclusions. The Techni-
cal Annex contains all the formal proofs together with the correctness and the
complexity of our algorithms. Finally, all the additional material about (i) imple-
mentation of the algorithms, (ii) tool usage and (iii) replication of the experiments
is available at https://github.com/gabriele-costa/pests.

2 A running example: a GPU kernel

In this section we introduce a simple yet realistic example that we use as running
throughout the paper. The example illustrates an instance of a system made of two
concurrent components, and its global specification consisting of two properties
intuitively presented below. We will show how the decomposition of the global
specification is done by partially evaluating it against one of the components. Then,
we model check the obtained local specification against the other component,
so verifying the original global specification. The first of the two properties is
expressed through an LTS and discussed in Section 4. For the second we take
advantage of the richer expressive power of s-LTS to reason about both data and
control. In Section 5 we show how this enables a fine-grained analysis of the system
behavior.

We consider a concurrent program (called kernel) running on a Graphical Pro-
cessing Unit (GPU). The program implements a producer-consumer schema rely-
ing on a circular queue. The program is written in OpenCL3, a C-like language for
programming GPUs. A sequential application P embodies an OpenCL kernel and
uses it to accelerate some computations. In practice, P compiles the kernel at run
time, loads it on the GPU memory, and launches its execution, which is carried
on by a group of threads running concurrently on the different GPU cores. During

3 https://www.khronos.org/opencl/

https://github.com/gabriele-costa/pests
https://www.khronos.org/opencl/

Natural Projection as Partial Model Checking 5

the execution, each thread is bound to an identifier, called local id, and threads
share a portion of the GPU memory, called local memory. A group of threads can
synchronize through a barrier. Intuitively, a barrier is an operator that blocks the
execution of each thread at a particular point. When all the threads reach the
same barrier, their execution is resumed.

Consider the OpenCL kernel of Fig. 1 that implements a simple producer-
consumer schema. Briefly, one instance of the kernel function manager is executed
on each core of a GPU. Here, for simplicity, we assume that only two cores exist.
A manager kernel iteratively invokes one of two functions, produce and consume,
depending on the thread identifier (either 0 or 1) returned by get local id(0).
Hence, the manager kernel forces each thread to assume one of the two roles,
either a producer or a consumer. The two functions use the local memory to share
a vector, called buffer, which implements a circular queue. The queue has eight
slots: a new item (i.e., a four-byte integer) is inserted (by the producer) in position
L[1] and removed (by the consumer) from position L[0]. In practice, the first two
bytes of L contain the head and tail pointers of the circular queue. Thus, they are
incremented after each enqueue/dequeue operation and set to 0 when they exceed
the buffer limit. The two threads iterate until both the producer and the consumer
processed exactly *N items.

The code of Fig. 1 suffers from several typical flaws. The first flaw concerns the
buffer’s consistency. Provided that the buffer’s size is at least 8, the two threads
cannot cause a buffer overflow. Nevertheless, there is no guarantee that enqueue
(line 15) and dequeue (line 5) always occur in the right order. In fact, since the
two threads run in parallel with no priority constraints, two unsafe configurations
may be reached: (i) the consumer attempts to extract an element from the empty
buffer and (ii) the producer attempts to insert an element into a full buffer.

The second potential flaw is a data race. Data races occur when two threads
simultaneously access the same, shared memory location and at least one of them
modifies the data. When both the threads access the same memory in write mode,
it is called a write-write data race. Otherwise we have a write-read data race. The
two threads of Fig. 1 handle three pointers to the shared memory space, i.e.,
L, buffer, and N (line 22). These variables are identified by the local modifier.
No data races can occur on N as it is never modified. A write-read data race on
buffer happens when the producer and the consumer access the same location.
Notice that this happens under conditions similar to those discussed for the buffer
consistency, e.g., enqueue and dequeue are not executed in the right order. The
case of L is more subtle. Both produce() and consume() modify the four bytes of
the variable L (of type int). However, the two functions operate on different bytes,
i.e., L[0] and L[1]. The single byte granularity is achieved through a cast to type
char * (lines 4 and 14). Hence, no data race actually affects L.

Verifying the correctness of GPU kernels, in general, and producer-consumer
schemas, in particular, are active research fields. Static analysis techniques such
as [9] and [36] aim at validating a kernel against some specific property, such as
absence of data races. The tools based on these techniques support developers by
identifying potentially dangerous code. Still, the developer must manually confirm
these alerts since the static analysis commonly considers an over-approximation
of the program’s actual behavior. For instance, GPUVerify [9], a prominent static
verification tool, reports a possible write-read data race on L when applied to the

6 Gabriele Costa et al.

1 constant int SIZE = 8;
2
3 int consume(local int *L, local int *buffer) {
4 local char *head = (local char *)L;
5 int val = buffer [*head]; // dequeue value
6 *head ++; // increment head pointer
7 if(*head == SIZE) { // buffer end reached
8 *head = 0;
9 }

10 return val;
11 }
12
13 void produce(local int *L, local int *buffer , int val) {
14 local char *tail = ((local char *)L)+1;
15 buffer [*tail] = val; // enqueue value
16 *tail ++; // increment tail pointer
17 if(*tail == SIZE) { // buffer end reached
18 *tail = 0;
19 }
20 }
21
22 kernel void manager(local int *L, local int *buffer , local int *N) {
23 int val = 0;
24 int sending = *N, receiving = *N;
25 while(sending > 0 || receiving > 0) {
26 barrier (); // synchronization
27 if(get_local_id (0) && receiving > 0) { // consumer thread
28 val = consume(L, buffer);
29 receiving --;
30 }
31 if(! get_local_id (0) && sending > 0) { // producer thread
32 produce(L, buffer , val +1);
33 sending --;
34 }
35 }
36 }

Fig. 1 A fragment of OpenCL.

kernel of Fig. 1 (see the Technical Annex). As we will see in Section 5, we avoid
this false positive through our symbolic algorithm.

Systems are usually composed of several modules, in our example the consumer
and the producer. Verifying that the system as a whole complies with a specifica-
tion requires checking that it satisfies a global specification. If the check fails, often
there is no indication of which module is not compliant, and thus one must rethink
the entire implementation. Instead, through decomposition, one can specialize the
specification to operate on the single modules, thereby possibly enhancing the
verification of the whole system. In addition, given a global specification and a
system missing some components, one can just synthesize the specifications for
the missing parts. For instance, as we will show in Example 3, the program in
Fig. 1 suffers from a buffer inconsistency flaw. Given a model of the producer, in
Section 4.2 we decompose a buffer consistency specification into a partial one that
the consumer must obey to avoid this misbehavior.

Natural Projection as Partial Model Checking 7

p0 p1 · · · p8

e
b

d

e
b

d

e

d

b

Fig. 2 The specification P of the consistency of a buffer with 8 positions, namely P (8).

3 A General Framework

In this section we cast both natural projection and partial model checking in the
common framework of Labeled Transition Systems.

3.1 Language semantics versus state semantics

Natural projection is commonly defined over (sets of) words [40]. Words are finite
sequences of actions, i.e., symbols labeling the transitions between the states of a
finite-state automaton (FSA). The language of an FSA is the set of all words that
label a sequence of transitions from an initial state to some distinguished state,
like a final or marking state. We let L denote the function that maps each FSA
to the corresponding language semantics. Given a system Sys and a specification
Spec, both FSAs, then Sys is said to satisfy Spec whenever L(Sys) ⊆ L(Spec).

Rather than an FSA, here we use a labeled transition system (LTS) to specify a
system Sys. An LTS is similar to an FSA, but with a weaker notion of acceptance,
where all states are final. We specify our running example below as an LTS.

Example 1 (Running example) Consider again the OpenCL program from Section 2
where the buffer positions are fixed to 8. Fig. 2 depicts a transition system that
encodes the specification P for the buffer’s consistency, where the symbols e and d

represent the (generic) enqueue and dequeue operations, respectively. Intuitively,
the threads cannot perform e actions when the buffer is full (state p8) and d

actions when the buffer is empty (state p0). Barrier synchronizations do not affect
the specification’s state. We indicate these actions with self-loops labeled with b.
Only the three operations mentioned above are relevant for the specification P .
Thus, we do not introduce further action labels.

For partial model checking, the specification Spec is defined by a formula of
the µ-calculus. The standard interpretation of the formulas is given by a state

semantics, i.e., a function that, given an LTS (for a system) Sys and a formula Φ,
returns the set of states of Sys that satisfy Φ. A set of evaluation rules formalizes
whether a state satisfies a formula or not. Given an LTS Sys and a µ-calculus
formula Φ, we say that Sys satisfies Φ whenever its initial state does.

The language semantics of temporal logics is strictly less expressive than the
state-based one [21]. A similar fact holds for FSAs and regular expressions [6].
Below we use a semantics from which both the state-based and the language
semantics can be obtained.

8 Gabriele Costa et al.

3.2 Operational model and natural projection

We now slightly generalize the existing approaches based on partial model checking
and on supervisory control theory used for locally verifying global properties of
discrete event systems. We then constructively prove that the two approaches are
equally expressive so that techniques from one can be transferred to the other.
To this end, we consider models expressed as (finite) labeled transition systems,
which describe the behavior of discrete systems. In particular, we restrict ourselves
here to deterministic transition systems.

Definition 3.1 A (deterministic) labeled transition system (LTS) is a tuple A =
(SA, ΣA,→A, ıA), where SA is a finite set of states (with ıA the initial state), ΣA
is a finite set of action labels, and →A: SA ×ΣA → SA is the transition function.
We write t = s

a−→ s′ to denote a transition, whenever →A (a, s) = s′, and we call s
the source state, a the action label, and s′ the destination state.

A trace σ ∈ T of an LTS A is either a single state s or a finite sequence of
transitions t1 · t2 · . . . such that for each ti, its destination is the source of ti+1 (if
any). When unnecessary, we omit the source of ti+1, and write a trace simply as the
sequence σ = s0a1s1a2s2 . . .ansn, alternating elements of SA and ΣA (written in
boldface for readability). Finally, we denote by JA, sK the set of traces of A starting
from state s and we write JAK for JA, ıAK, i.e., for those traces starting from the
initial state ıA.

Example 2 Consider again our running example. Fig. 3 depicts the LTSs A and B

that model the behavior of the consumer and producer, respectively. On the left-
hand side we show the control flow graph (CFG) of the consumer thread where we
use a light grey font for the irrelevant instructions. Intuitively, the CFG consists
of a loop iterating the execution of the central block. For this reason, the LTS A

alternates actions b (for barrier) and d (for dequeue). The CFG of the producer is
similar: the only difference is that it increments the tail pointer, rather than the
head pointer. Hence, B is symmetric: it performs e (for enqueue) in place of d. The
traces starting from the initial states of A and B are, respectively,

JAK = {q0, q0bq1, q0bq1dq0, q0bq1dq0bq1, . . .}
JBK = {r0, r0br1, r0br1er0, r0br1er0br1, . . .}

Typically, a system, or plant in control theory, consists of multiple interacting
components running in parallel. Intuitively, when two LTSs are put in parallel,
each proceeds asynchronously, except on those actions they share, upon which they
synchronize. We render this behavior by means of the synchronous product [4]. In
particular, we rephrase the definition given in [40].

Definition 3.2 Given two LTSs A and B such that ΣA∩ΣB = Γ , the synchronous

product of A and B is A ‖ B = (SA × SB , ΣA ∪ ΣB ,→A‖B , 〈ıA, ıB〉), where →A‖B
is as follows:

〈sA, sB〉
a−→A‖B 〈s′A, sB〉 if sA

a−→A s′A and a ∈ ΣA \ Γ
〈sA, sB〉

b−→A‖B 〈sA, s′B〉 if sB
b−→B s′B and b ∈ ΣB \ Γ

〈sA, sB〉
γ−→A‖B 〈s′A, s

′
B〉 if sA

γ−→A s′A, sB
γ−→A s′B , and γ ∈ Γ.

Natural Projection as Partial Model Checking 9

if(receiving > 0)

barrier(); // action b
int val = buffer[*head]; // action d
*head++;
if(*head == SIZE)

receiving--;

*head = 0;

false

true

true
false

q0

q1

bd

r0

r1

be

Fig. 3 From left to right: CFG of the consumer, and LTSs for the consumer (A) and producer
(B).

〈q0, r0〉 〈q1, r0〉 〈q1, r1〉 〈q0, r1〉

b

d
ed

e

Fig. 4 Synchronous product A ‖ B, where bold transitions denote synchronous moves.

Example 3 Consider again the LTSs A and B from Figure 3. Their synchronous
product A ‖ B (with Γ = {b}) is depicted in Figure 4. We use bold edges to denote
synchronous transitions. Intuitively, A ‖ B does not satisfy P (n), for any n > 0. In

fact 〈q0, r0〉
b−→ 〈q1, r1〉

d−→ 〈q0, r1〉 but bd 6∈ L(P (n)).

Next, we generalize the notion of natural projection on languages. Intuitively,
natural projection can be seen as the inverse operation with respect to the syn-
chronous product of two LTSs. Indeed, through natural projection one recovers
the LTS of one of the components of the parallel composition.

Given a computation of A ‖ B, natural projection extracts the relevant trace
of one of the two LTSs, including the synchronized transitions (see the second case
below). Note that, unlike other definitions, e.g., in [40], our traces are sequences of
transitions including both states and actions. We also define the inverse projection
in the expected way.

Definition 3.3 Given LTSs A and B with Γ = ΣA ∩ΣB , the natural projection on

A of a trace σ of A ‖ B, in symbols PA(σ), is defined as follows:

PA(〈sA, sB〉) = sA
PA(〈sA, sB〉a〈s′A, s

′
B〉 · σ) = sAas

′
A · PA(σ) if a ∈ ΣA

PA(〈sA, sB〉b〈sA, s′B〉 · σ) = PA(σ) if b ∈ ΣB \ Γ.

Natural projection on the second component B is analogously defined. We extend
the natural projection to sets of traces in the usual way: PA(T) = {PA(σ) | σ ∈ T }.

The inverse projection of a trace σ over an LTS A ‖ B, in symbols P−1
A (σ),

is defined as P−1
A (σ) = {σ′ | PA(σ′) = σ}. Its extension to sets is P−1

A (T) =⋃
σ∈T

P−1
A (σ).

10 Gabriele Costa et al.

Example 4 Consider the following two traces σ1 = 〈q0, r0〉b〈q1, r1〉d〈q0, r1〉e〈q0, r0〉
and σ2 = 〈q0, r0〉b〈q1, r1〉e〈q1, r0〉d〈q0, r0〉. We have that the projections PA(σ1) =
PA(σ2) = q0bq1dq0 ∈ JAK and σ1, σ2 ∈ P−1

B (q0bq1dq0).

Two classical properties [40] concerning the interplay between the synchronous
product and the natural projection hold. Their proofs are trivial.

Fact 3.1. PA(JA ‖ BK) ⊆ JAK and JA ‖ BK = P−1
B (JAK) ∩ P−1

A (JBK).

3.3 Equational µ-calculus and partial model checking

Below, we recall the variant of the µ-calculus commonly used in partial model
checking called modal equations [1]. A specification is given as a sequence of modal
equations, and one is typically interested in the value of the top variable that is
the simultaneous solution of all the equations. Equations have variables on the
left-hand side and assertions on the right-hand side. Assertions are built from the
boolean constants ff and tt , variables x, boolean operators ∧ and ∨, and modalities
for necessity [·] and possibility 〈·〉. Equations also have fix-point operators (mini-
mum µ and maximum ν) over variables x, and can be organized in equation systems.

Definition 3.4 (Syntax of the µ-calculus) Given a set of variables x ∈ X and
an alphabet of actions a ∈ Σ, assertions φ, φ′ ∈ A are given by the syntax:

φ ::= ff | tt | x | φ ∧ φ′ | φ ∨ φ′ | [a]φ | 〈a〉φ.

An equation is of the form x =π φ, where π ∈ {µ, ν}, µ denotes a minimum fixed
point equation, and ν a maximum one. An equation system Φ is a possibly empty
sequence (ε) of equations, where each variable x occurs in the left-hand side of at
most a single equation. Thus Φ is given by

Φ ::= x =π φ;Φ | ε.

A top assertion Φ↓x amounts to the simultaneous solution of an equation system
Φ onto the top variable x.

We define the semantics of modal equations in terms of the traces of an LTS
by extending the usual state semantics of [1] as follows. First, given an assertion
φ, its state semantics ‖φ‖ρ is given by the set of states of an LTS that satisfy φ

in the context ρ, where the function ρ assigns meaning to variables. The boolean
connectives are interpreted as intersection and union. The possibility modality
‖〈a〉φ‖ρ (respectively, the necessity modality ‖[a]φ‖ρ) denotes the states for which
some (respectively, all) of their outgoing transitions labeled by a lead to states
that satisfy φ. For more details on µ-calculus see [27,10].

Definition 3.5 (Semantics of the µ-calculus [1]) Let A be an LTS, and ρ : X →
2SA be an environment that maps variables to sets of A’s states. Given an assertion
φ, the state semantics of φ is the mapping ‖·‖ : A → (X → 2SA)→ 2SA inductively
defined as follows.
‖ff ‖ρ = ∅ ‖tt‖ρ = SA ‖x‖ρ = ρ(x)

‖φ ∧ φ′‖ρ = ‖φ‖ρ ∩ ‖φ′‖ρ ‖[a]φ‖ρ = {s ∈ SA | ∀s′.s
a−→A s′ ⇒ s′ ∈ ‖φ‖ρ}

‖φ ∨ φ′‖ρ = ‖φ‖ρ ∪ ‖φ′‖ρ ‖〈a〉φ‖ρ = {s ∈ SA | ∃s′.s
a−→A s′ ∧ s′ ∈ ‖φ‖ρ}

Natural Projection as Partial Model Checking 11

We extend the state semantics from assertions to equation systems. First we
introduce some auxiliary notation. The empty mapping is represented by [], [x 7→
U] is the environment where U is assigned to x, and ρ ◦ρ′ is the mapping obtained
by composing ρ and ρ′. Given a function f(U) on the powerset of SA, let πU.f(U)
be its fixed point. We now define the semantics of equation systems by:

‖ε‖ρ = []
‖x =π φ;Φ‖ρ =R(U∗) where U∗ = πU.‖φ‖ρ◦R(U)

and R(U) = [x 7→ U] ◦ ‖Φ‖ρ◦[x 7→U].

Finally, for top assertions, let ‖Φ ↓ x‖ be a shorthand for ‖Φ‖[](x).

Note that whenever we apply function composition ◦, its arguments have disjoint
domains. Next, we present the trace semantics: a trace starting from a state s

satisfies φ if s does.

Definition 3.6 Given an LTS A, an environment ρ, and a state s ∈ SA, the trace

semantics of an assertion φ is a function 〈〈·〉〉 : A → SA → (X → 2SA) → T , which
we also extend to equation systems, defined as follows.

〈〈φ〉〉sρ =

{
JA, sK if s ∈ ‖φ‖ρ
∅ otherwise

〈〈Φ〉〉ρ = λx.
⋃

s∈‖Φ‖ρ(x)

JA, sK.

We write 〈〈Φ↓x〉〉 in place of λx.〈〈Φ〉〉[].

Example 5 Consider Φ↓x where Φ = {x =µ [e]y ∧ 〈d〉tt ; y =ν 〈e〉x ∨ 〈b〉x} .
This system consists of two equations. Intuitively, the first equation says that after
every e transition a state satisfying the second equation for y is reached ([e]y) and
that, from the current state, there must exist at least one d transition (〈d〉tt) The
second equation states that there must exist either a e transition or a b transition.
In both cases, the reached state must satisfy the x equation.

We compute ‖Φ↓x‖ with respect to A ‖ B. ‖Φ ↓ x‖ = U∗ = µU.F (U), where
F (U) = ‖[e]y ∧ 〈d〉tt‖[x 7→U,y 7→G(U)] and G(U) = νU ′.‖〈e〉x ∨ 〈b〉x‖[x7→U,y 7→U ′] =
‖〈e〉x ∨ 〈b〉x‖[x 7→U] (since y does not occur in the assertion). Following the Knaster-

Tarski theorem, we compute U∗ =
⋃n

Fn(∅):

1. G(∅) = ‖〈e〉x ∨ 〈b〉x‖[x 7→∅] = ∅ and U1 = F (∅) = ‖[e]y ∧ 〈d〉tt‖[x 7→∅,y 7→∅] =

{〈q1, r0〉} (i.e., the only state that admits d but not e).

2. G({〈q1, r0〉}) = ‖〈e〉x ∨ 〈b〉x‖[x7→{〈q1,r0〉}] = {〈q1, r1〉} (since 〈q1, r1〉
e−→ 〈q1, r0〉)

and U2 = F ({〈q1, r0〉}) = ‖[e]y ∧ 〈d〉tt‖[x7→{〈q1,r0〉},y 7→{〈q1,r1〉}] = {〈q1, r0〉}.

Since U2 = U1, we have obtained the fixed point U∗. Finally, we can compute
〈〈Φ↓x〉〉, which amounts to JA ‖ B, 〈q1, r0〉K.

We now define when an LTS satisfies an equation system. Recall that JAK stands
for JA, ıAK.

Definition 3.7 An LTS A satisfies a top assertion Φ↓x, in symbols A |=s Φ↓x, if
and only if ıA ∈ ‖Φ↓x‖. Moreover, let A |=σ Φ↓x if and only if JAK ⊆ 〈〈Φ↓x〉〉.

The following fact relates the notion of satisfiability defined in terms of the
state semantics (|=s) with the one based on the trace semantics (|=σ); its proof is
immediate by Definition 3.6.

12 Gabriele Costa et al.

Fact 3.2. A |=s Φ↓x if and only if A |=σ Φ↓x.

As previously mentioned, partial model checking is based on the quotienting

operation //. Roughly, the idea is to specialize the specification of a composed
system on a particular component. Below, we define the quotienting operation [1]
on the LTS A ‖ B. Quotienting reduces A ‖ B |=s Φ to B |=s Φ↓x//BA. Note
that each equation of the system Φ gives rise to a system of equations, one for
each state si of A, all of the same kind, minimum or maximum (thus forming
a π-block [3]). This is done by introducing a fresh variable xsi for each state si.
Intuitively, the equation xsi =π φ//ΣBsi represents the requirements on B when A

is in state si. Since the occurrence of the variables on the right-hand side depends
on A’s transitions, Φ↓x//BA embeds the behavior of A.

Definition 3.8 Given a top assertion Φ ↓ x, we define the quotienting of the
assertion on an LTS A with respect to an alphabet ΣB as follows.

Φ↓x//ΣBA = (Φ//ΣBA)↓xıA , where

ε//ΣBA = ε (x =π φ;Φ)//ΣBA =


xs1 =π φ//ΣBs1
...
xsn =π φ//ΣBsn

; Φ//ΣBA (∀ si ∈ SA)

x//ΣBs = xs tt//ΣBs = tt ff //ΣBs = ff

φ ∨ φ′//ΣBs = φ//ΣBs ∨ φ
′//ΣBs φ ∧ φ′//ΣBs = φ//ΣBs ∧ φ

′//ΣBs

(〈a〉φ)//ΣBs =
∨

s
a−→s′

φ//ΣBs
′ ([a]φ)//ΣBs =

∧
s
a−→s′

φ//ΣBs
′ if a ∈ ΣA \ Γ

(〈b〉φ)//ΣBs = 〈b〉(φ//ΣBs) ([b]φ)//ΣBs = [b](φ//ΣBs) if b ∈ ΣB \ Γ

(〈γ〉φ)//ΣBs =
∨

s
γ−→s′

〈γ〉(φ//ΣBs
′) ([γ]φ)//ΣBs =

∧
s
γ−→s′

[γ](φ//ΣBs
′) if γ ∈ Γ.

Example 6 Consider the top assertion Φ ↓ x of Example 5 and the LTSs A and B

of Example 2. Quotienting Φ ↓ x against A, we obtain Φ//ΣBA ↓ xq0 , where

Φ//ΣAB =


xq0 =µ [e]yq0 ∧ ff

xq1 =µ [e]yq1 ∧ tt

yq0 =ν 〈e〉xq0 ∨ ff

yq1 =ν 〈e〉xq1 ∨ 〈b〉xq0

=


xq0 =µ ff

xq1 =µ [e]yq1
yq0 =ν 〈e〉xq0
yq1 =ν 〈e〉xq1 ∨ 〈b〉xq0

= {xq0 =µ ff } .

The leftmost equations are obtained by applying the rules of Definition 3.8. Then
we simplify on the right-hand sides of the first three equations, i.e., those of xq0 , xq1
and yq0 . In particular, we apply the standard boolean transformations ψ ∧ff ≡ ff ,
ψ∧ tt ≡ ψ, and ψ∨ff ≡ ψ. Finally we reduce the number of equations by removing
those unreachable from the top variable xq0 . For a detailed description of our
simplification strategies, see [3]. Therefore 〈〈Φ ↓ x//ΣBA〉〉 = ∅. This was expected
since, as shown in Example 5, 〈q0, r0〉 6∈ ‖Φ ↓ x‖.

Natural Projection as Partial Model Checking 13

3.4 Unifying the Logical and the Operational Approaches

Here we prove the equivalence between natural projection and partial model check-
ing (Theorem 3.2), establishing the correspondence between quotienting and nat-
ural projection.

Theorem 3.1 For all A,B, x, and Φ on A ‖ B, 〈〈Φ↓x//ΣBA〉〉 = PB(〈〈Φ↓x〉〉).

The following theorem states that the synchronous product of two LTSs satis-
fies a global equation system if and only if its components satisfy their quotients,
i.e., their local assertions.

Theorem 3.2 For all A,B, x and Φ on A ‖ B,

A ‖ B |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:

1. A |=ς Φ↓x//ΣAB 2. B |=ς Φ↓x//ΣBA
3. A |=σ PA(〈〈Φ↓x〉〉) 4. B |=σ PB(〈〈Φ↓x〉〉).

4 Quotienting Finite-State Systems

In this section we present an algorithm for quotienting a finite-state system defined
as an LTS. Afterwards, we prove its correctness with respect to the standard
quotienting operator and we study its complexity. Finally, we apply it to our
running example to address three problems: verification, submodule construction,
and controller synthesis.

4.1 Quotienting algorithm

Our algorithm consists of two procedures that are applied sequentially. The first,
called quotient (Table 2), builds a non-deterministic transition system starting
from two LTSs, i.e., a specification P and an agent A. Moreover, it takes as an argu-
ment the alphabet of actions ΣB of the new transition system B. Non-deterministic
transition systems have a distinguished label λ, and serve as an intermediate rep-
resentation. The states of the resulting transition system include all the pairs of
states of P and A, except for those that denote a violation of P (line 1). The
transition relation (line 3) is defined using the quotienting rules from Section 3.
Also, note that the relation → is restricted to the states of S (denoted →S).

The second procedure, called unify (in Table 3) translates a non-deterministic
transition system back to an LTS. By using closures over λ, unify groups transition
system states. This process is similar to the standard subset construction [24],
except that we put an a ∈ ΣB \ Γ transition between two groups Q and M only
if (i) M is the intersection of the λ-closures of the states reachable from Q with
an a transition and (ii) all the states of Q admit at least an a transition leading
to a state of M (∧-move). The procedure unify works as follows. Starting from
the λ-closure of B’s initial state (line 1), it repeats a partition generation cycle
(lines 4–13). Each cycle removes an element Q from the set S of the partitions to

14 Gabriele Costa et al.

Begin proc quot i ent
input P = (SP , ΣP , →P , iP)
input A = (SA , ΣA , →A , iA)
input ΣB

1 : S := (SP × SA) \
⋃

a∈ΣA
{(sP , rA) | sP 6

a−→P ∧rA
a−→A}

2 : i := (iP , iA)

3 : → :=
⋃
sP



⋃
a∈ΣA\Γ

{((sP , rA), λ, (s′P , r
′
A)) | sP

a−→P s′P ∧ rA
a−→A r′A}⋃

a∈ΣB\Γ
{((sP , rA), a, (s′P , rA)) | sP

a−→P s′P }⋃
a∈Γ
{((sP , rA), a, (s′P , r

′
A)) | sP

a−→P s′P ∧ rA
a−→A r′A}

4 : B := (S , ΣB , →S , i)
5 : output un i fy (B)
End proc

Table 2 The quotienting algorithm.

Begin proc un i fy
input B = (SB , ΣB , →B , iB)

1 : I := λ− c l o s e ({iB})
2 : R , S := {I}
3 : → := ∅
4 : while S 6= ∅ do
5 : Q := pick&remove (S)
6 : for each a ∈ ΣB \ {λ}
7 : M := ∧−move(Q , a)
8 : i f M 6= ∅ then
9 : → := → ∪{(Q, a,M)}

10 : i f M 6∈ R then S := S ∪ {M} ; R := R ∪ {M} end i f
11 : end i f
12 : end for
13 : end while
14 : output (R , ΣB \ {λ} , → , I)
end proc

Begin proc ∧−move
input Q
input a

1 : M := λ− c l o s e (
q∈Q⋂
{q′|q a−→B q′})

2 : output M
end proc

Table 3 The unification algorithm.

be processed. Then, for all the actions in ΣB \ {λ}, a partition M is computed by
∧-move (line 7). If the partition is nonempty, a new transition is added from Q

to M (line 9). Also, if M is a freshly generated partition, i.e., M 6∈ R, it is added
to both S and R (line 10). The procedure terminates when no new partitions are
generated.

Our quotienting algorithm is correct with respect to the quotienting operator
and runs in PTIME. More precisely, assuming that Γ,ΣA \ Γ , and ΣB \ Γ have m
elements, and that P and A have n states, the complexity is O(n6m2) (see Ap-
pendix A.4 for more details). We avoid an exponential blow-up in our algorithm (in
contrast to Table 1) since we only consider deterministic transition systems. Note
that a determinization step for non-deterministic transition systems is exponential
in the worst case.

Natural Projection as Partial Model Checking 15

w0 w1 w2 · · · w7 w8
b

b b

d b

d b

d d

Fig. 5 Graphical representation of the consumer A′.

4.2 Application to our running example

Recall from Example 3 that A ‖ B does not satisfy the buffer consistency property
P . Informally the reason is that the barrier does not prevent the consumer A from
accessing the buffer before the producer B. However, the barrier does ensure that
iterations of the producer and the consumer are always paired. This implies that
only the first position of the buffer is actually used.

We apply our quotienting algorithm to find an A′ such that A′ ‖ B |= P .
That is, we solve an instance of the submodule construction problem for B and P .
The resulting LTS is given in Fig. 5. Intuitively, A′ behaves as follows. Initially, it
synchronizes (action b) twice to ensure that B enqueues at least one item. Then,
it either (i) synchronizes again and moves to the next state or (ii) dequeues an
item (action d) and goes back one state. The reason is that each state wi denotes
a configuration under which the buffer contains i or i− 1 items. As a result, there
cannot be a state w9 and also the state w0 can be reached only once at the start.
Finally, note that a similar construction also applies to the controller synthesis
and verification problems. For the former it suffices to constrain the alphabet of
A′ to only contain synchronization actions, while for the latter we check that the
submodule A′ accepts the empty string.

5 Quotienting Symbolic Finite-State Systems

In this section, we extend our results to symbolic Finite-State Transition Systems
(s-LTSs). This rather expressive formalism is a variant of symbolic Finite State
Automata [16] where all states are final. The novelty with respect to a standard
LTS (or to an FSA) is that the alphabet is the carrier of an effective boolean
algebra and that transitions are enabled by predicates on the possibly infinitely
many elements of the algebra. This model allows a convenient representation of
large systems, the behavior of which also depends on the data handled, and not
only on the control flow as it is the case with a standard LTS.

For example, consider again the OpenCL kernel of Fig. 1 and the kinds of flaws
mentioned in Section 2. Buffer consistency has been addressed using the model of
standard LTSs, because consistency only depends on the actions (enqueue and
dequeue) performed. However, when representing data races we cannot abstract
away from the affected memory location, the action performed (read/write), and
the data involved. We model them using to s-LTSs. In Fig. 6, we show on the left
the control-flow graph of our consumer. Since we are interested in the actions on
L we highlight them. In the upper part on the right there is the s-LTS for the
consumer. Accordingly, we show only the portion with read/write actions that are

16 Gabriele Costa et al.

parametric with respect to the memory address L and its offset. In the bottom
part, we display the s-LTS of the consumer.

In this example, one can encode our producer/consumer in a standard LTS, be-
cause the operations and data are finite. The price to pay is an exponential growth
of the number of resulting labels and, consequently, of the transitions. Clearly, such
encodings cannot be done, when data are taken from an infinite domain like the
natural numbers or strings from a given alphabet. In these cases there always ex-
ists a standard LTS that accepts a language that however is isomoprphic to the
given s-LTS (see [16]).

We start by recalling some known notions about s-LTSs, adapting them to our
case as needed and illustrating them on our running example. Then, we present
our contributions: a symbolic version of (i) the synchronous product operator; (ii)
partial model checking and natural projection; and (iii) a quotienting algorithm.

5.1 Symbolic Labeled Transition Systems

We start by recalling the definition of an effective boolean algebra and algebraic
operators over them that are the building blocks for symbolic LTSs.

Definition 5.1 ([15]) An effective boolean algebra (EBA) is a tuple A = 〈D, Ψ, {|·|}〉
where:

– D is a non-empty, recursively enumerable set (called the alphabet or universe
of A);

– Ψ is a recursively enumerable set of predicates closed under the connectives ∧,
∨, and ¬ such that ⊥,> ∈ Ψ ; and

– {|·|} : Φ → 2D is the denotation function such that {|⊥|} = ∅, {|>|} = D,
{|ϕ ∧ ψ|} = {|ϕ|} ∩ {|ψ|}, {|ϕ ∨ ψ|} = {|ϕ|} ∪ {|ψ|}, and {|¬ϕ|} = D \ {|ϕ|} (for any
ϕ,ψ ∈ Ψ).

Given a predicate ϕ of an EBA A, we say that ϕ is satisfiable, in symbols
satA(ϕ), when {|ϕ|} 6= ∅.

EBAs can be composed using several operators (see [38] and [15] for de-
tails). We recall those that are relevant for the definitions given below. Let A1 =
〈D1, Ψ1, {|·|}1〉 and A2 = 〈D2, Ψ2, {|·|}2〉 be EBAs.

(union) A1 ⊕A2 is the EBA 〈D⊕, Ψ⊕, {|·|}⊕〉 such that
– D⊕ = (D1 × {1}) ∪ (D2 × {2});
– Ψ⊕ = Ψ1 × Ψ2; and
– {|〈ϕ1, ϕ2〉|}⊕ = ({|ϕ1|}1 × {1}) ∪ ({|ϕ2|}2 × {2}).

(product) A1 ⊗A2 is the EBA 〈D⊗, Ψ⊗, {|·|}⊗〉 such that
– D⊗ = D1 ×D2;
– Ψ⊗ = Ψ1 × Ψ2; and
– {|〈ϕ1, ϕ2〉|}⊗ = {|ϕ1|}1 × {|ϕ2|}2.

(restriction) A1 � V (with V ∈ 2D1) is the EBA 〈D, Ψ, {|·|}〉 such that
– D = D1 ∩ V ;
– Ψ = Ψ1; and
– {|ϕ|} = {|ϕ|}1 ∩ V .

For brevity, we may write A � ϕ for A � {|ϕ|}.

Natural Projection as Partial Model Checking 17

Example 7 The EBA B encoding the write/read actions of our running example is
defined as follows.

– D = {r, w} × Id × N, where Id stands for the set of variable identifiers of a
program.

– Ψ includes equality and inequality (on both {r, w} and Id) and ordering rela-
tionships between natural numbers.

We use the variables α and β to range over {r, w} and X and Y for generic elements
of Id , the bytes of which are identified by their position (variable n). Also, we write
α(X,n) : ϕ to denote the predicates of Ψ and we use straightforward abbreviations
such as w(L, 0) for α(X,n) : α = w ∧X = L ∧ n = 0.

We now state the definition of an s-LTS, we introduce its symbolic traces and
we show the mapping from the symbolic to the concrete traces. The definition of
s-LTS is based on that of s-FA [16].

Definition 5.2 (s-LTS) A symbolic LTS (s-LTS) is a tuple M = (Q,A,∆, ı), where
Q is a finite set of states (with ı the initial state), A = 〈D, Ψ, {|·|}〉 is an EBA, and
∆ ⊆ Q× Ψ ×Q is the transition relation such that (s, ϕ, s′) ∈ ∆ only if satA(ϕ).

An s-LTS is deterministic when for all (q, ϕ, q′) and (q, ϕ′, q′′), ϕ∧ϕ′ is unsatis-
fiable. Given an s-LTS there always exists an equivalent, deterministic one. Thus,
in the following we only consider deterministic s-LTSs.

Analogously to Definition 3.1, the traces of an s-LTS belong to T and have the
form σ = s0d1s1d2 . . . dnsn, where for each i ∈ [1, n] there exists (si−1, ϕ, si) ∈ ∆
such that di ∈ {|ϕ|}. In contrast, a symbolic trace of the s-LTS M is a sequence
η = s0ϕ1s1ϕ2 . . . ϕnsn, where for each i ∈ [1, n] there exists (si−1, ϕi, si) ∈ ∆. We
use JM, sK to denote the set of traces of M such that s0 = s and tr(M, s) to denote
the set of symbolic traces such that s0 = s (also we omit s when s = ı).
Finally, a symbolic trace η = s0ϕ1s1ϕ2 . . . ϕnsn can be instantiated to the set of
concrete traces s2c(η) = {s0d1s1d2 . . . dnsn | ∀ i ∈ [1, n]. di ∈ {|ϕi|}}.

We next describe the symbolic model of our running example.

Example 8 Consider again the data race flaw for the OpenCL code discussed in
Section 2. We use the EBA B of Example 7 to model the kernel accesses to the
shared memory. The predicate α(X,n) : ϕ specifies the kernel accesses actions α
(read or write) on the n-th byte of variable X. Here ϕ is a constraint on the values
that α, X, and n can assume. Fig. 6 on the left shows the CFG of the consumer
and an s-LTS modeling it, in the right, upper part. Below, we also show the s-LTS
for the producer. Recall that the variable head points to L[0], while tail (see Fig.
1) refers to L[1].

5.2 Parallel composition of s-LTSs

Before proposing a new notion of parallel composition for s-LTSs, it is convenient
to introduce an auxiliary operation on EBAs.

Definition 5.3 Given two EBAs, A1 = 〈D1, Ψ1, {|·|}1〉 and A2 = 〈D2, Ψ2, {|·|}2〉 and
two predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 (called synchronization predicates), we define
the parallel product of A1 and A2 over ψ1 and ψ2 (in symbols A1 ~ψ1,ψ2

A2) as

A1 ~ψ1,ψ2
A2 = A1 � (¬ψ1)⊕A2 � (¬ψ2)⊕ (A1 � ψ1 ⊗A2 � ψ2).

18 Gabriele Costa et al.

if(receiving > 0)

barrier();
int val = buffer[*head]; // read L[0]
*head++; // write L[0]
if(*head == SIZE) // read L[0]

receiving--;

*head = 0; // write L[0]

false

true

true
false

q0 q1 q2 q3

r0 r1 r2 r3

r(L, 0)

r(L, 0)

w(L, 0)

w(L, 0) r(L, 0)

r(L, 1)

r(L, 1)

w(L, 1)

w(L, 1) r(L, 1)

Fig. 6 From left to right: CFG of the consumer, and s-LTSs for the consumer (top) and for
the producer (bottom).

A predicate of A1 ~ψ1,ψ2
A2 has the form ψ = ((ψA1

, ψA2
), (ψ′A1

, ψ′A2
)), for some

ψA1
, ψ′A1

∈ Ψ1 and ψA2
, ψ′A2

∈ Ψ2. We write ψ|1 , ψ|2 , ψ|3 , ψ|4 to denote ψA1
, ψA2

, ψ′A1
, ψ′A2

,
respectively. Similarly, the elements in the alphabet of A1~ψ1,ψ2

A2 have the form
((((d1, 1), (d2, 2)), 1), ((d′1, d

′
2), 2)), which we abbreviate to ((d1, 1), (d2, 2), ((d′1, d

′
2), 3))

or even, when clear from the context, to (d1, d2, d
′
1, d
′
2).

The definition of the parallel product of two s-LTSs follows. While this oper-
ation on LTSs requires a common sub-alphabet Γ , its symbolic counterpart syn-
chronizes two s-LTSs on those actions that satisfy two distinguished, synchroniza-
tion predicates. Intuitively, these predicates define the conditions under which a
synchronous transition occurs. Note that we need two predicates as the involved
s-LTSs can be defined on two different EBAs.

Definition 5.4 (Parallel composition) Given two s-LTS M1 = (Q1,A1,∆1, ı1,)
and M2 = (Q2,A2,∆2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2,
the parallel composition of M1 and M2 over ψ1 and ψ2 (in symbols M1 ‖ψ1,ψ2

M2)
is

M1 ‖ψ1,ψ2
M2 = (Q1 ×Q2,A1 ~ψ1,ψ2

A2,∆
∗, 〈ı1, ı2〉),

where

∆∗ =
⋃

(p1,ϕ1,p
′
1)∈∆1

(p2,ϕ2,p
′
2)∈∆2


{(〈p1, p2〉, 〈⊥1,⊥2, 〈ϕ1 ∧ ψ1, ϕ2 ∧ ψ2〉〉, 〈p′1, p′2〉)}

{(〈p1, p2〉, 〈ϕ1 ∧ ¬ψ1,⊥2, 〈⊥1,⊥2〉〉, 〈p′1, p2〉)}

{(〈p1, p2〉, 〈⊥1, ϕ2 ∧ ¬ψ2, 〈⊥1,⊥2〉〉, 〈p1, p
′
2〉)}

and ⊥1 (⊥2) is the false predicate of A1 (A2, respectively).

We now apply this definition to our running example.

Example 9 The parallel composition of the two s-LTS of Fig. 6 over the synchro-
nization predicates ψ1 = α(X,n) : α = w ∧ X = L and ψ2 = α(X,n) : X = L is
depicted in Fig. 7. For readability, we omit the transition labels and we instead
discuss them here. By the definition of product, a transition’s predicate can only
belong to three groups: 〈ϕ1∧¬ψ1,⊥,⊥〉, 〈⊥, ϕ2∧¬ψ2,⊥〉, or 〈⊥,⊥, 〈ϕ1∧ψ1, ϕ2∧ψ2〉〉,
where ϕ1 and ϕ2 are predicates of the consumer and producer, respectively. Note

Natural Projection as Partial Model Checking 19

〈q0, r0〉

〈q0, r1〉

〈q0, r2〉

〈q0, r3〉

〈q1, r0〉

〈q1, r1〉

〈q1, r2〉

〈q1, r3〉

〈q2, r0〉

〈q2, r1〉

〈q2, r2〉

〈q2, r3〉

〈q3, r0〉

〈q3, r1〉

〈q3, r2〉

〈q3, r3〉

Fig. 7 The parallel composition of the producer and the consumer of Fig. 6.

that the predicates of the second type are not satisfiable since ¬ψ2 requires that
X 6= L while all the ϕ2 constrain X = L. Thus, the second group of transitions is
empty. A similar observation applies to the predicates of the first group. Indeed,
since X = L the only assignment that satisfies ¬ψ1 is for α = r. Therefore, all
these transitions are labeled with 〈r(L, 0),⊥,⊥〉. We use a thin arrow to denote
them. As in Example 3 we use bold arrows to denote synchronous transitions.
However, here we need to distinguish them according to their predicates. Anal-
ogous to the argument for the first group of transitions, here we have that the
first component of a synchronization predicate must be w(L, 0). Thus, there are
only two types of synchronous transitions depending on the second component of
the synchronization predicate (either w(L, 1) or r(L, 1)). We use dashed lines for
the transitions labeled with predicate 〈⊥,⊥, 〈w(L, 0), r(L, 1)〉〉 and solid lines for
〈⊥,⊥, 〈w(L, 0), w(L, 1)〉〉.

The following small technical example illustrates a policy that ensures memory
access segmentation and, thus, avoids data races.

20 Gabriele Costa et al.

w0 〈⊥,⊥, 〈α(X,n) : n = 0, β(Y,m) : m = 1〉〉〈>,>,⊥〉

Fig. 8 The s-LTS W specifying the data race policy.

Example 10 Consider the s-LTS W depicted in Fig. 8 that represents a policy
specification to prevent data races. Briefly, W accepts any asynchronous operation
carried out by each thread individually (left loop). Instead, synchronous operations
are only permitted in one case (right loop), i.e., when different bytes are accessed
by the two threads.

As a final remark, note that the product of Example 9 complies to this policy.
Intuitively, the reason is that, for all the transition’s predicates of the product,
there exists at least one satisfiable predicate among the policy’s transitions.

5.3 Symbolic natural projection and symbolic quotienting

We now extend the results of Section 4 to the symbolic case. First we lift the
natural projection to the traces of an s-LTS M . Afterwards, we define the quotient
of M with respect to a pair of synchronization predicates, and give an algorithm
for computing it. Finally, we state the relationships between the symbolic versions
of natural projection and quotienting. In the following, we overload some names
and symbols.

Definition 5.5 (Natural projection) Given two s-LTS M1 = (Q1,A1,∆1, ı1) and
M2 = (Q2,A2,∆2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2,
the natural projection on M1 of a trace σ of M1 ‖ψ1,ψ2

M2, in symbols PM1
(σ), is

defined as follows:

PM1
(〈p1, p2〉) = p1

PM1
((〈p1, p2〉, (d1, 1), 〈p′1, p2〉) · σ) = (p1, d1, p

′
1) · PM1

(σ)
PM1

((〈p1, p2〉, (d2, 2), 〈p1, p
′
2〉) · σ) = PM1

(σ)
PM1

((〈p1, p2〉, ((d1, d2), 3), 〈p′1, p′2〉) · σ) = (p1, d1, p
′
1) · PM1

(σ)

The natural projection on the second component M2 is analogously defined.
Also, we extend the natural projection to sets of traces in the usual way.

Definition 5.6 (Symbolic natural projection) Given two s-LTSM1 = (Q1,A1,∆1, ı1)
and M2 = (Q2,A2,∆2, ı2) and two synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2,
the symbolic natural projection on M1 of a symbolic trace η of M1 ‖ψ1,ψ2

M2, in sym-
bols ΠM1

(η), is defined as follows:

ΠM1
(〈p1, p2〉) = p1

ΠM1
((〈p1, p2〉, ψ, 〈p′1, p2〉) · η) = (p1, ϕ1, p

′
1) ·ΠM1

(η) if ψ = 〈ϕ1,⊥2, 〈⊥1,⊥2〉〉
ΠM1

((〈p1, p2〉, ψ, 〈p1, p
′
2〉) · η) =ΠM1

(η) if ψ = 〈⊥1, ϕ2, 〈⊥1,⊥2〉〉
ΠM1

((〈p1, p2〉, ψ, 〈p′1, p′2〉) · η) = (p1, ϕ1, p
′
1) ·ΠM1

(η) if ψ = 〈⊥1,⊥2, 〈ϕ1, ϕ2〉〉

The symbolic natural projection on the second component M2 is analogously de-
fined and we extend this definition to sets of traces in the usual way.

Natural Projection as Partial Model Checking 21

The inverse projection of a trace σ over an s-LTS M1 ‖ψ1,ψ2
M2, in symbols

Π−1
M1

(σ), is defined as Π−1
M1

(σ) = {σ′ | ΠM1
(σ′) = σ}, and is lifted to sets as

usual.

The following lemma shows that the natural projection of concrete traces coin-
cides with the “concretization” via the function s2c of the symbolic traces obtained
via the symbolic natural projection.

Lemma 5.1 For every s-LTSs M1 = (Q1,A1,∆1, ı1) and M2 = (Q2,A2,∆2, ı2) and

synchronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 the following holds

PMi
(JM1 ‖ψ1,ψ2

M2K) = s2c(ΠMi
(tr(M1 ‖ψ1,ψ2

M2))) (with i ∈ {1, 2})

We now lift the definition of quotienting a µ−equations’ system Φ for s-LTSs.
The symbolic quotienting operator is Φ//ψ1,ψ2

M , where ψ1 and ψ2 are the synchro-
nization predicates for M and for the s-LTS to be synthetized, respectively. The
schema is the same of Definition 3.8 except for the cases that handle modalities.
Since we are dealing with a product of EBAs, the alphabet symbols are as in Defi-
nition 5.3. Moreover, the transitions of M are now labeled by a predicate ψ. Hence,
an action d1 in the scope of a modality is a synchronization only if it satisfies ψ1.
Instead, if it satisfies ¬ψ1, it denotes an asynchronous transition. This results in
checking the satisfiability of (ψ ∧ ψ1)(d1) and (ψ ∧ ¬ψ1)(d1), respectively.

Definition 5.7 Given a top assertion Φ ↓ x over the EBA A1~ψ1,ψ2
A2, we define

its quotienting on a s-LTS M = 〈Q,A1,∆, ı〉, in symbols Φ↓x//ψ1,ψ2
M , as follows.

Φ↓x//ψ1,ψ2
M = (Φ//ψ1,ψ2

M)↓xı, where

ε//ψ1,ψ2
M = ε (x =π ϕ;Φ)//ψ1,ψ2

M =


xs1 =π ϕ//ψ1,ψ2

s1
...
xsn =π ϕ//ψ1,ψ2

sn

; Φ//ψ1,ψ2
M (∀ si ∈ Q)

x//ψ1,ψ2
s = xs tt//ψ1,ψ2

s = tt ff //ψ1,ψ2
s = ff

ϕ ∨ ϕ′//ψ1,ψ2
s = ϕ//ψ1,ψ2

s ∨ ϕ′//ψ1,ψ2
s ϕ ∧ ϕ′//ψ1,ψ2

s = ϕ//ψ1,ψ2
s ∧ ϕ′//ψ1,ψ2

s

(〈(d1, 1)〉ϕ)//ψ1,ψ2
s =

∨
(s,ψ,s′)∈∆

(ψ∧¬ψ1)(d1)

ϕ//ψ1,ψ2
s′ ([(d1, 1)]ϕ)//ψ1,ψ2

s =
∧

(s,ψ,s′)∈∆
(ψ∧¬ψ1)(d1)

ϕ//ψ1,ψ2
s′

(〈(d2, 2)〉ϕ)//ψ1,ψ2
s =

{
〈d2〉(ϕ//ψ1,ψ2

s) if ¬ψ2(d2)
ff otherwise

([(d2, 2)]ϕ)//ψ1,ψ2
s =

{
[d2](ϕ//ψ1,ψ2

s) if ¬ψ2(d2)
tt otherwise

(〈((d1, d2), 3)〉ϕ)//ψ1,ψ2
s =


∨

(s,ψ,s′)∈∆
(ψ∧ψ1)(d1)

〈d2〉(ϕ//ψ1,ψ2
s′) if ψ2(d2)

ff otherwise

([((d1, d2), 3)]ϕ)//ψ1,ψ2
s =


∧

(s,ψ,s′)∈∆
(ψ∧ψ1)(d1)

[d2](ϕ//ψ1,ψ2
s′) if ψ2(d2)

tt otherwise

22 Gabriele Costa et al.

We next establish the correspondence between symbolic quotienting and sym-
bolic natural projection. To this end, we must redefine the µ−calculus state se-
mantics of Definition 3.5 (and therefore the trace semantics of Definition 3.6)
which applies to LTSs, rather than s-LTSs. The new definition is straightforward
since, given an s-LTS M = (Q,A,∆, ı), it only requires introducing the following
notation.

s
a−→M s′ ⇐⇒ ∃(s, ϕ, s′) ∈ ∆ s.t. ϕ(a)

Theorem 5.1 For all M1 = (Q1,A1,∆1, ı1),M2 = (Q2,A2,∆2, ı2), x, and Φ on the

EBA A1 ~ψ1,ψ2
A2, we have that

〈〈Φ↓x//ψ1,ψ2
M1〉〉 = PM2

(〈〈Φ↓x〉〉).

As was the case for standard LTS, the synchronous product of two s-LTSs sat-
isfies a global equation system if and only if its components satisfy their quotients,
i.e., their local assertions. Note that Lemma 5.1 lifts this result also to symbolic
natural projection.

Theorem 5.2 For all M1 = (Q1,A1,∆1, ı1),M2 = (Q2,A2,∆2, ı2), x, and Φ on the

EBA A1 ~ψ1,ψ2
A2, we have that

M1 ‖ψ1,ψ2
M2 |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:

1. M1 |=ς Φ↓x//ψ1,ψ2
M2 2. M2 |=ς Φ↓x//ψ1,ψ2

M1

3. M1 |=σ PM1
(〈〈Φ↓x〉〉) 4. M2 |=σ PM2

(〈〈Φ↓x〉〉).

5.4 Quotienting algorithm

Before introducing the symbolic quotienting algorithm, we recall the definition of
Minterms. Intuitively, Minterms are building blocks for translating an s-LTS into
an LTS that accepts an isomorphic language. Based on the predicates appearing
on transitions, Minterms partition the EBA domain into a finite number of satisfia-
bility regions. It is immediate then to define an isomorphism between these regions
and a finite alphabet. Note however that the transitions of the resulting LTS are
exponentially many with respect to those of the original s-LTS. The details of our
translation are given inside the correctness proof in the Technical Annex.

Definition 5.8 ([16]) Let M = 〈Q,A, ı,∆〉 be an s-LTS, and let F denote the set
of predicates labeling the transitions of M . The Minterms of M is the set

Minterms(M) =
⋃
I⊆F
{ϕI =

∧
ϕ∈I

ϕ ∧
∧

ϕ̄∈F\I

¬ϕ̄ | satA(ϕI)}.

Since our symbolic quotienting algorithm manipulates an s-LTS P encoding a
specification over a parallel product M ‖ψ1,ψ2

N , the predicates on the transitions
of P are four-tuples (see Definition 5.4). Therefore the same holds for Minterms(P).

The symbolic quotienting algorithm is given in Table 4. It has the same struc-
ture of the algorithm of Table 2, thus we focus here on explaining the relationship
between them.

Natural Projection as Partial Model Checking 23

Begin proc quot i ent
input P = (QP ,A ~ψ1,ψ2

B,∆P , ıP)
input M = (QM ,A,∆M , ıM)

1 : Q̄ := (QP ×QM) \
⋃

(r,ϕ,r′)∈∆M
{(s, r) | satA(ϕ ∧ ¬

∨
(s,ψ,s′)∈∆P

ψ|1)}

2 : i := (ıP , ıM)

3 : ∆̄λ :=
⋃

(qP ,ψP ,q
′
P)∈∆P

(qM ,ψM ,q′M)∈∆M

{((qP , qM), ψM ∧ ψP |1 ∧ ¬ψ1, (q′P , q
′
M))}

4 : ∆̄B :=
⋃

(qP ,ψP ,q
′
P)∈∆P

qM∈QM

{((qP , qM), ψP |2 ∧ ¬ψ2, (q′P , qM))}

5 : ∆̄∗ :=
⋃

(qP ,ψP ,q
′
P)∈∆P

(qM ,ψM ,q′M)∈∆M

{
{((qP , qM), ψP |4 ∧ ψ2, (q′P , q

′
M))} if satA(ψM ∧ ψP |3 ∧ ψ1)

∅ otherwise

6 : N := un i fy (ı , ∆̄λ , ∆̄B ∪ ∆̄∗)
7 : output N

End proc

Begin proc un i fy
input ı

input ∆̄λ

input ∆̂

1 : I := c l o s e ({i} , ∆̄λ)
2 : QN , S := {I}
3 : ∆N := ∅
4 : while S 6= ∅ do
5 : Q := pick&remove (S)
6 : for each ϕ s . t . ∃ψ ∈ Minterms(P) : ϕ = ψ|i with i ∈ {2, 4}
7 : M := ∧−move(Q , ∆̂ , ϕ)
8 : i f M 6= ∅ then
9 : ∆N := ∆N ∪ {(Q,ϕ,M)}

10 : i f M 6∈ R then S := S ∪ {M} ; QN := QN ∪ {M} end i f
11 : end i f
12 : end for
13 : end while
14 : output 〈B, QN ,∆N , ı〉
end proc

Begin proc ∧−move
input Q

input ∆̂
input ϕ

1 : M := c l o s e (
q∈Q⋂ {

q′
∣∣∣∣ (q, ϕ′, q′) ∈ ∆̂and satB(ϕ ∧ ϕ′)

}
, ∆̄λ)

2 : output M
end proc

Table 4 The symbolic quotienting algorithm for s-LTS.

As for the LTS case, our algorithm consists of two main procedures and an
auxiliary one. The first, called quotient (Table 4), builds a non-deterministic s-
LTS whose states are pairs, given a specification P , an agent M , and a pair of
synchronization predicates ψ1 and ψ2. The labels record whether they derive from
a transition of M (ψM ∧ ψP |1 ∧ ¬ψ1), of P (ψP |2 ∧ ¬ψ2), or whether they denote
a synchronization with P (ψP |4 ∧ ψ2), provided that satA(ψM ∧ ψP |3 ∧ ψ1). The
second procedure is unify, which differs from the analogous one in Table 3 because
Minterms are used in place of plain action labels. The same holds for the auxiliary
∧-move, where the states in the intersection must be reachable through a transition

24 Gabriele Costa et al.

{
(w0, q0)
(w0, q1)

}  (w0, q1)
(w0, q2)
(w0, q3)



α(X,n) : X 6= L
α(X,n) : X 6= L

α(X,n) : X = L ∧ n = 1

α(X,n) : X = L ∧ n = 1

Fig. 9 The s-LTS corresponding to W//ψ1,ψ2
M1. Bold edges denote transitions in ∆̄∗.

(labeled with ϕ′) that is compatible with the Minterm predicate ϕ, in symbols
satB(ϕ ∧ ϕ′).

Also the symbolic quotienting algorithm is correct with respect to the pre-
vious quotienting operator (see the Technical Annex). As expected, it runs in
EXPTIME, because of the satisfiability requirements and because the number of
Minterms grows exponentially with the transitions of the s-LTS. Of course, one
can beforehand transform an s-LTS in an LTS by using Minterms and apply the
quotienting algorithm of Section 4. The overall process still requires EXPTIME.
However, the partial specification obtained in this way will be in the form of
an LTS, thus lacking the expressive power of the corresponding s-LTS obtained
through symbolic quotienting.

Example 11 We apply the algorithm of Table 4 to compute the quotientW//ψ1,ψ2
M1,

where W is the specification of Example 10 depicted in Fig. 8, M1 is the s-LTS of
the consumer of Example 8, ψ1 = α(X,n) : X = L∧α = w and ψ2 = β(Y,m) : Y = L.

First notice that (for some q and q′) each transition in ∆̄λ has the form (q, ψM ∧
ψP |1 ∧¬ψ1, q

′}). However, ψM ∧¬ψ1 is satisfiable only if the sub-formula α(X,n) :
X = L ∧X 6= L is satisfiable, which is trivially false. For this reason ∆̄λ = ∅.

Since ∆̄λ = ∅, the set of transitions of the resulting s-LTS is given by ∆̄B ∪ ∆̄∗.
Figure 9 shows this, where we use different edge thickness to distinguish between
the transitions of ∆̄B and ∆̄∗.

6 Related Work

Natural projection is mostly used by the community working on control theory and
discrete-event systems. In the 1980s, the seminal works by Wonham et al. (e.g.,
[41,42]) exploited natural projection-based algorithms for synthesizing both local
and global controllers. Other authors continued this line of research and proposed
extensions and refinements of these methods, see e.g., [18,19,39,30].

Partial model checking has been successfully applied to the synthesis of con-
trollers. Given an automaton representing a plant and a µ-calculus formula, Basu
and Kumar [7] compute the quotient of the specification with respect to the plant.
The satisfiability of the resulting formula is checked using a tableau that also re-
turns a valid model yielding the controller. Their tableau works similarly to our
quotienting algorithm, but applies to a more specific setting, as they are interested

Natural Projection as Partial Model Checking 25

in generating controllers. In contrast, Martinelli and Matteucci [32] use partial
model checking to generate a control process for a partially unspecified system in
order to guarantee compliance with respect to a µ-calculus formula. The generated
controller takes the form of an edit automaton [8]. A quotienting-based approach
was also proposed for real-time [29] and hybrid [12] systems. These paradigms aim
at accurately modeling the behavior of, e.g., cyber-physical systems.

Some researchers have proposed techniques based on the verification of tem-
poral logics for addressing the controller synthesis problem. Arnold et al. [5] were
among the first to control a deterministic plant with a µ-calculus specification.
Also Ziller and Schneider [43] and Riedweg and Pinchinat [34] reduce the problem
of synthesizing a controller to checking the satisfiability of a formula in (a variant
of) the µ-calculus. A similar approach was presented by Jiang and Kumar [25]
and Gromyko et al. [22]. Similarly to [43] and [34], [25] present an approach that
reduces the problem of synthesizing a controller to that of checking a CTL? for-
mula’s satisfiability. In contrast, [22] proposes a method based on symbolic model
checking to synthesize controllers. Their approach applies to a fragment of CTL.

7 Conclusion

Our work provides results that build a bridge between supervisory control theory
and formal verification. In particular, we have formally established the relation-
ship between partial model checking and natural projection by reducing natural
projection to partial model checking and proving their equivalence under com-
mon assumptions. Besides using plain Labeled Transition System for expressing
system specifications, we also considered symbolic Labeled Transitions System,
whose transitions carry predicates on elements from possibly infinite boolean al-
gebras, instead of letters. Dealing with this richer model required us to introduce
new notions, including a new symbolic synchronous product and new symbolic
versions of partial model checking and natural projection.

Aside from establishing novel and particularly relevant connections, our work
also opens new directions for investigation. Since (symbolic) natural projection is
related to language theory in general, there could be other application fields where
(symbolic) partial model checking can be used as an alternative. The original for-
mulation of partial model checking applies to the µ-calculus, while our quotienting
algorithm works on (symbolic) Labeled Transitions Systems. To the best of our
knowledge, no quotienting algorithms exist for formalisms with a different expres-
sive power, such as LTL or CTL, let alone symbolic variants of them.

We are also developing PESTS, a working prototype to handle both LTS
and s-LTS. The source code and the documentation of our tool are available
at https://github.com/gabriele-costa/pests, along with the experiments men-
tioned below. The performance of PESTS was experimentally assessed in [13] and
the results are in the website under the heading “TACAS Experiments”. The ex-
periments consisted in solving instances of increasing size of CSP and SCP for
LTSs modeling an Unmanned Aerial Vehicles delivery system. Furthermore, we
applied PESTS to a more realistic case study concerning the verification of the

https://github.com/gabriele-costa/pests

26 Gabriele Costa et al.

LTSs modeling a Flexible manufacturing system,4 available under the heading
“Flexible manufacturing system”.

Acknowledgments This work was partially supported by SNSF funded project
IZK0Z2 168370 “Enforceable Security Policies in Fog Computing”, by EU Horizon
2020 project No 830892 “SPARTA” and by “PRA 2018 66 DECLware: Declarative
methodologies for designing and deploying applications” of the Università di Pisa.

References

1. Andersen, H.R.: Partial model checking (extended abstract). In: Proceedings of Tenth
Annual IEEE Symposium on Logic in Computer Science, pp. 398–407. IEEE Computer
Society Press (1995)

2. Andersen, H.R., Lind-Nielsen, J.: MuDiv: A tool for partial model checking. Demo pre-
sentation at CONCUR (1996)

3. Andersen, H.R., Lind-Nielsen, J.: Partial model checking of modal equations: A survey.
International Journal on Software Tools for Technology Transfer 2(3), 242–259 (1999).
URL http://dx.doi.org/10.1007/s100090050032

4. Arnold, A., Nivat, M.: Comportements de processus. In: Les Mathématiques de
l’Informatique, pp. 35–68. Colloque AFCET (1982)

5. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial
observation. Theor. Comput. Sci. 1(303), 7–34 (2003)

6. Baeten, J.C.M., Luttik, B., Muller, T., Van Tilburg, P.: Expressiveness modulo bisim-
ilarity of regular expressions with parallel composition. Mathematical Structures
in Computer Science 26, 933–968 (2016). URL http://journals.cambridge.org/
article S0960129514000309

7. Basu, S., Kumar, R.: Quotient-based approach to control of nondeterministic
discrete-event systems with -calculus specification (2006). Available at http://
home.eng.iastate.edu/~rkumar/PUBS/acc06-muctrl.pdf

8. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Foundations
of Computer Security. Copenhagen, Denmark (2002). URL http://www.ece.cmu.edu/

~lbauer/papers/editauto-fcs02.pdf
9. Betts, A., Chong, N., Donaldson, A., Qadeer, S., Thomson, P.: GPUVerify: A Verifier for

GPU Kernels. In: Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’12, pp. 113–132. ACM,
New York, NY, USA (2012). URL http://doi.acm.org/10.1145/2384616.2384625

10. Bradfield, J., Stirling, C.: Handbook of Modal Logic, Volume 3, chap. Modal Mu-Calculi.
Elsevier Science (2006)

11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Kluwer (1999)
12. Cassez, F., Laroussinie, F.: Model-Checking for Hybrid Systems by Quotienting and Con-

straints Solving. In: E.A. Emerson, A.P. Sistla (eds.) Computer Aided Verification, pp.
373–388. Springer Berlin Heidelberg, Berlin, Heidelberg (2000)

13. Costa, G., Basin, D., Bodei, C., Degano, P., Galletta, L.: From natural projection to partial
model checking and back. In: D. Beyer, M. Huisman (eds.) Tools and Algorithms for the
Construction and Analysis of Systems, pp. 344–361. Springer International Publishing,
Cham (2018)

14. Costa, G., Basin, D., Bodei, C., Degano, P., Galletta, L.: Pests: Partial evaluator of simple
transition systems. GitHub: https://github.com/gabriele-costa/pests DOI: https://
doi.org/10.6084/m9.figshare.5918707.v1 (2018)

15. D’Antoni, L., Veanes, M.: Monadic Second-order Logic on Finite Sequences. In: Pro-
ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Lan-
guages, POPL 2017, pp. 232–245. ACM, New York, NY, USA (2017). URL http:
//doi.acm.org/10.1145/3009837.3009844

16. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers. In: 29th
International Conference on Computer Aided Verification (CAV’17). Springer (2017)

4 Based on http://www.rt.techfak.fau.de/FGdes/index.html

http://dx.doi.org/10.1007/s100090050032
http://journals.cambridge.org/article_S0960129514000309
http://journals.cambridge.org/article_S0960129514000309
http://home.eng.iastate.edu/~rkumar/PUBS/acc06-muctrl.pdf
http://home.eng.iastate.edu/~rkumar/PUBS/acc06-muctrl.pdf
http://www.ece.cmu.edu/~lbauer/papers/editauto-fcs02.pdf
http://www.ece.cmu.edu/~lbauer/papers/editauto-fcs02.pdf
http://doi.acm.org/10.1145/2384616.2384625
https://github.com/gabriele-costa/pests
https://doi.org/10.6084/m9.figshare.5918707.v1
https://doi.org/10.6084/m9.figshare.5918707.v1
http://doi.acm.org/10.1145/3009837.3009844
http://doi.acm.org/10.1145/3009837.3009844
http://www.rt.techfak.fau.de/FGdes/index.html

Natural Projection as Partial Model Checking 27

17. Ehlers, R., Lafortune, S., Tripakis, S., Vardi, M.: Bridging the Gap between Supervi-
sory Control and Reactive Synthesis: Case of Full Observation and Centralized Control.
IFAC Proceedings Volumes 47(2), 222 – 227 (2014). URL http://www.sciencedirect.com/
science/article/pii/S1474667015374061

18. Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control synthesis. In:
Proceedings of 2006 8th International Workshop on Discrete Event Systems, pp. 388–389
(2006). DOI 10.1109/WODES.2006.382399

19. Feng, L., Wonham, W.M.: On the computation of natural observers in discrete-event
systems. Discrete Event Dynamic Systems 20(1), 63–102 (2010). URL http://dx.doi.org/
10.1007/s10626-008-0054-3

20. Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete
event systems. Discrete Event Dynamic Systems 17(2), 211–232 (2007). URL http:
//dx.doi.org/10.1007/s10626-006-0008-6

21. Giacobazzi, R., Ranzato, F.: States vs. traces in model checking by abstract interpretation.
In: Proceedings of The 9th International Static Analysis Symposium, SAS’02, Lecture
Notes in Computer Science, vol. 2477, pp. 461–476. Springer (2002)

22. Gromyko, A., Pistore, M., Traverso, P.: A Tool for Controller Synthesis via Symbolic
Model Checking. In: 8th International Workshop on Discrete Event Systems, pp. 475–476
(2006). DOI 10.1109/WODES.2006.382523

23. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems. The
MIT Press (2014)

24. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA (2006)

25. Jiang, S., Kumar, R.: Supervisory control of discrete event systems with ctl∗ temporal
logic specifications. SIAM J. Control and Optimization 44(6), 2079–2103 (2006)

26. Jirásková, G., Masopust, T.: On a structural property in the state complexity of projected
regular languages. Theoretical Computer Science 449, 93–105 (2012). DOI 10.1016/
j.tcs.2012.04.009

27. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 27, 333–354
(1983)

28. Lang, F., Mateescu, R.: Partial Model Checking Using Networks of Labelled Transition
Systems and Boolean Equation Systems, Lecture Notes in Computer Science, vol. 7214,
pp. 141–156. Springer (2012)

29. Laroussinie, F., Larsen, K.G.: CMC: A Tool for Compositional Model-Checking of Real-
Time Systems, pp. 439–456. Springer US, Boston, MA (1998). DOI 10.1007/978-0-387-
35394-4 27. URL https://doi.org/10.1007/978-0-387-35394-4 27

30. Lin, F., Wonham, W.: Decentralized supervisory control of discrete-event systems. In-
formation Sciences 44(3), 199 – 224 (1988). DOI http://dx.doi.org/10.1016/0020-
0255(88)90002-3

31. Martinelli, F., Matteucci, I.: Synthesis of local controller programs for enforcing global se-
curity properties. In: 3rd International Conference on Availability, Reliability and Security
(ARES), pp. 1120–1127 (2008). DOI 10.1109/ARES.2008.196

32. Martinelli, F., Matteucci, I.: A framework for automatic generation of security controller.
Softw. Test., Verif. Reliab. 22(8), 563–582 (2012). URL http://dx.doi.org/10.1002/
stvr.441

33. Moor, T., Schmidt, K., Perk, S.: libFAUDES – An open source C++ library for discrete
event systems. In: 9th International Workshop on Discrete Event Systems, pp. 125–130
(2008). DOI 10.1109/WODES.2008.4605933

34. Riedweg, S., Pinchinat, S.: Quantified mu-calculus for control synthesis. In: Mathemat-
ical Foundations of Computer Science 2003, 28th International Symposium, MFCS 2003
Proceedings, Lecture Notes in Computer Science, vol. 2747, pp. 642–651. Springer (2003)

35. Rudie, K., Grigorov, L.: Integrated Discrete-Event Systems (IDES). Online at https://
qshare.queensu.ca/Users01/rudie/www/software.html (2017). Department of Electrical
and Computer Engineering, Queen’s University in Kingston, ON, Canada

36. Sharma, R., Bauer, M., Aiken, A.: Verification of producer-consumer synchronization in
GPU programs. In: Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, Portland, OR, USA, June 15-17, 2015, pp. 88–98.
ACM (2015). DOI 10.1145/2737924.2737962

37. Su, R., Wonham, W.M.: Global and local consistencies in distributed fault diagnosis
for discrete-event systems. IEEE Transactions on Automatic Control 50(12), 1923–1935
(2005). DOI 10.1109/TAC.2005.860291

http://www.sciencedirect.com/science/article/pii/S1474667015374061
http://www.sciencedirect.com/science/article/pii/S1474667015374061
http://dx.doi.org/10.1007/s10626-008-0054-3
http://dx.doi.org/10.1007/s10626-008-0054-3
http://dx.doi.org/10.1007/s10626-006-0008-6
http://dx.doi.org/10.1007/s10626-006-0008-6
https://doi.org/10.1007/978-0-387-35394-4_27
http://dx.doi.org/10.1002/stvr.441
http://dx.doi.org/10.1002/stvr.441
https://qshare.queensu.ca/Users01/rudie/www/software.html
https://qshare.queensu.ca/Users01/rudie/www/software.html

28 Gabriele Costa et al.

38. Veanes, M.: Applications of Symbolic Finite Automata. In: CIAA’13, LNCS, vol. 7982, pp.
16–23. Springer (2013). URL https://www.microsoft.com/en-us/research/publication/
applications-of-symbolic-finite-automata/

39. Wong, K.C.: On the Complexity of Projections of Discrete-Event Systems. In: Proceedings
of IEEE Workshop on Discrete Event Systems, pp. 201–208 (1998)

40. Wonham, W.M.: Supervisory control of discrete-event systems. Online at http://
www.control.toronto.edu/DES (2017). Department of Electrical and Computer Engineer-
ing, University of Toronto, ON, Canada

41. Wonham, W.M., Ramadge, P.J.: On the supremal controllable sublanguage of a given
language. In: Proceedings of the 23rd IEEE Conference on Decision and Control, pp.
1073–1080 (1984). DOI 10.1109/CDC.1984.272178

42. Wonham, W.M., Ramadge, P.J.: Modular supervisory control of discrete-event systems.
Mathematics of Control, Signals and Systems 1(1), 13–30 (1988). URL http://dx.doi.org/
10.1007/BF02551233

43. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM Trans.
Embedded Comput. Syst. 4(2), 331–362 (2005)

A Technical Annex

A.1 GPUVerify

Below we show an excerpt of the output generated by GPUVerify [9], when executed on our
example kernel producer-consumer.c in Fig. 1. The first line invokes the tool. The second line
reports the false positive, i.e., that a write-read race is detected on the first byte of L. The rest
of the output compares the instructions of the two components that cause the data race.

$ gpuverify --local_size =2 --global_size =2 producer -consumer.c

[...]
producer -consumer.c: error: possible write -read race on L[0] (byte 1):

Read by work item 0 in work group 0, producer -consumer.c:15:3:
buffer [*tail] = val; // enqueue value

invoked from producer -consumer.c:32:7:
produce(L, buffer , val +1);

Write by work item 1 in work group 0, producer -consumer.c:8:5:
*head = 0;

invoked from producer -consumer.c:28:13:
val = consume(L, buffer);
[...]

A.2 Technical proofs

Here we prove the lemmata and theorems of the paper. We also introduce some relevant
definitions on S-LTSs.

To start, we introduce an auxiliary definition that roughly acts as a quotienting of an
environment ρ. Below, we will write

⊕
i∈I

ρi for the finite composition of functions ρi over the

elements of an index set I.

Definition A.1 Given a synchronous product A ‖ B, we define
∇B(·) : (X → 2SA×SB)→ (XSA → 2SB) as

∇B(ρ) =
⊕

x∈Dom(ρ)

⊕
sA∈SA

[xsA 7→ UxB(sA)], where UxB(sA) = {sB | 〈sA, sB〉 ∈ ρ(x)}.

https://www.microsoft.com/en-us/research/publication/applications-of-symbolic-finite-automata/
https://www.microsoft.com/en-us/research/publication/applications-of-symbolic-finite-automata/
http://www.control.toronto.edu/DES
http://www.control.toronto.edu/DES
http://dx.doi.org/10.1007/BF02551233
http://dx.doi.org/10.1007/BF02551233

Natural Projection as Partial Model Checking 29

The following lemma intuitively states that quotienting an assertion (and an environment)
preserves the semantics, i.e., a state 〈sA, sB〉 satisfies φ if and only if sB satisfies the quotient
of φ on B. Indeed, the following statement can be rewritten as ‖φ//ΣB sA‖∇B(ρ)

= {sB |
〈sA, sB〉 ∈ ‖φ‖ρ}.

Lemma A.1 For all A,B, ρ, and φ on A ‖ B, 〈sA, sB〉 ∈ ‖φ‖ρ ⇐⇒ sB ∈ ‖φ//ΣB sA‖∇B(ρ)
.

Proof. By induction over the structure of φ.

– Cases tt and ff . Trivial.
– Case x. By the definition of ∇B(ρ).
– Cases φ ∧ φ′, φ ∨ φ′. By the induction hypothesis.

– Case 〈a〉φ. By Definition 3.5, 〈sA, sB〉 ∈ ‖〈a〉φ‖ρ if and only if ∃s′A, s
′
B such that 〈sA, sB〉

a−→A‖B
〈s′A, s

′
B〉 ∧ 〈s

′
A, s
′
B〉 ∈ ‖φ‖ρ. By the induction hypothesis, this is equivalent to

∃s′A, s
′
B such that 〈sA, sB〉

a−→A‖B 〈s′A, s
′
B〉 ∧ s

′
B ∈ ‖φ//ΣB s

′
A‖∇B(ρ). (1)

Then we consider three exhaustive cases.
– a ∈ ΣA\Γ . Here s′B = sB and (1) is satisfied if and only if sB ∈ ‖

∨
sA

a−→As
′

φ//ΣB s
′‖∇B(ρ)

.

We conclude by applying Definition 3.8.
– a ∈ ΣB \ Γ . In this case s′A = sA and, by Definition 3.5, (1) is equivalent to sB ∈
‖〈a〉(φ//ΣB sA)‖∇B(ρ)

. Again, we close the case by applying Definition 3.8.

– a ∈ Γ . We combine the reasoning of the two previous cases to conclude that sB ∈
‖

∨
sA

a−→As
′

〈a〉(φ//Bs′)‖∇ΣB (ρ)
.

– Case [a]φ. Symmetric to the previous one.

We next extend Lemma A.1 to a system of equations, providing an alternative view of
quotienting an assertion on a component of a synchronous product.

Lemma A.2 For all A,B, ρ, and Φ on A ‖ B, ∇B(‖Φ‖ρ) = ‖Φ//ΣBA‖∇B(ρ)
.

Proof. We proceed by induction on the structure of Φ.

– Base case: Φ = ε. Trivial.
– Induction step: Φ = x =π φ;Φ′. By definition, ‖Φ‖ρ = [x 7→ U∗] ◦ ‖Φ′‖

ρ◦[x 7→U∗] where U∗

is the fixed point computed according to Definition 3.5. Thus, we have that ∇B(‖Φ‖ρ) =

∇B([x 7→ U∗] ◦ ‖Φ′‖
ρ◦[x 7→U∗]) = ∇B([x 7→ U∗]) ◦ ∇B(‖Φ′‖

ρ◦[x 7→U∗]). By the induction

hypothesis, this reduces to

∇B([x 7→ U∗]) ◦ ‖Φ′//BA‖∇B(ρ)◦∇B([x 7→U∗]). (2)

By Definition A.1, ∇B([x 7→ U∗]) =
⊕
s∈SA

[xs 7→ U∗B,s] where U∗B,s = {s′ | 〈s, s′〉 ∈ U∗}.

By replacing U∗ with its definition we obtain

U∗B,s = {s′ | 〈s, s′〉 ∈ πU.‖φ‖ρ◦R(U)},

which we rewrite to
U∗B,s = πU.{s′ | 〈s, s′〉 ∈ ‖φ‖ρ◦R(U)}.

By Lemma A.1, this is equivalent to

U∗B,s = πUB,s.‖φ//ΣB s‖∇B(ρ)◦∇B(R(U)),

where ∇B(R(U)) = ∇B([x 7→ U] ◦ ‖Φ′‖
ρ◦[x 7→U]

). By induction hypothesis and by Defini-

tion A.1, we have⊕
s∈SA

[xs 7→ UB,s]◦∇B(‖Φ′‖ρ◦[x7→U]) =
⊕
s∈SA

[xs 7→ UB,s]◦‖Φ′//ΣBA‖∇B(ρ) ◦
⊕

s∈SA
[xs 7→UB,s]

30 Gabriele Costa et al.

As a consequence, we rewrite (3) to5⊕
s∈SA

[xs 7→ U∗B,s] ◦ ‖Φ
′//ΣBA‖∇B(ρ) ◦

⊕
s∈SA

[xs 7→U∗B,s],

which, after repeatedly applying Definition 3.5 to each element s ∈ SA turns out to be
‖Φ//ΣBA‖∇B(ρ)

.

The following corollary is immediate (recall that xsA is the variable corresponding to the
quotient of x on sA).

Corollary A.1 For all A,B, ρ, x, and Φ on A ‖ B,

〈sA, sB〉 ∈ ‖Φ‖ρ(x)⇐⇒ sB ∈ ‖Φ//ΣBA‖∇B(ρ)(xsA).

Theorem 3.1 For all A,B, x, and Φ on A ‖ B, 〈〈Φ↓x//ΣBA〉〉 = PB(〈〈Φ↓x〉〉).

Proof. By Definition 3.6, it suffices to establish

〈〈Φ//ΣBA〉〉[](xıA) = PB(〈〈Φ〉〉[](x)),

which holds if and only if

〈ıA, ıB〉 ∈ ‖Φ‖[](x)⇐⇒ ıB ∈ ‖Φ//ΣBA‖[](xıA).

We conclude by Corollary A.1.

Theorem 3.2 For all A,B, x and Φ on A ‖ B,

A ‖ B |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:

1. A |=ς Φ↓x//ΣAB 2. B |=ς Φ↓x//ΣBA
3. A |=σ PA(〈〈Φ↓x〉〉) 4. B |=σ PB(〈〈Φ↓x〉〉).

Proof. The equivalence of items 1 and 2 and A ‖ B |=ς Φ ↓ x is in Andersen95partialmodel
(with the additional use of Theorem 3.1). The other equivalences follow immediately by The-
orem 3.1 (and by the commutativity of ‖).

We now lift the needed definition and the results above to the symbolic case.

Lemma 5.1 For every s-LTSs M1 = (Q1,A1,∆1, ı1) and M2 = (Q2,A2,∆2, ı2) and syn-
chronization predicates ψ1 ∈ Ψ1 and ψ2 ∈ Ψ2 the following holds

PMi (JM1 ‖ψ1,ψ2
M2K) = s2c(ΠMi (tr(M1 ‖ψ1,ψ2

M2))) (with i ∈ {1, 2})

Proof. From now on we assume i = 1 as the case for i = 2 is symmetric. We start by observing
that, by definition, for every s-LTS M holds that s2c(tr(M)) = JMK. Thus we rewrite the
proof statement as

PM1 (s2c(tr(M1 ‖ψ1,ψ2
M2))) = s2c(ΠM1 (tr(M1 ‖ψ1,ψ2

M2)))

Then we prove by induction that ∀η.s2c(ΠM1 (η)) = PM1 (s2c(η)).

1. Case η = 〈p1, p2〉. Trivial.
2. Case η = (〈p1, p2〉, 〈ϕ1,⊥2, 〈⊥1,⊥2〉〉, 〈p′1, p2〉)·η′. In this case s2c(ΠM1 (η)) = s2c((p1, ϕ1, p′1)·

ΠM1
(η′)) = {(p1, d1, p′1) ·σ |d1 ∈ {|ϕ1|} ∧σ ∈ s2c(ΠM1

(η′))}. By the induction hypothesis
this is equal to {(p1, d1, p′1) · σ | d1 ∈ {|ϕ1|} ∧ σ ∈ PM1 (s2c(η′))} = PM1 (s2c(η)).

5 Notice that the order of the xs equations is immaterial as they form a π-block.

Natural Projection as Partial Model Checking 31

3. Case η = (〈p1, p2〉, 〈⊥1, ϕ2, 〈⊥1,⊥2〉〉, 〈p1, p′2〉) · η′. In this case it suffices to apply the
induction hypothesis on η′.

4. Case η = (〈p1, p2〉, 〈⊥1,⊥2, 〈ϕ1, ϕ2〉〉, 〈p′1, p′2〉) · η′. This case is analogous to case 2.

The following definition extends Definition A.1.

Definition A.2 For all M1 = 〈Q1,A1,∆1, ı1〉,M2 = 〈Q2,A2,∆2, ı2〉, x, and Φ on the EBA
A1 ~ψ1,ψ2

A2, we define ∇M2
(·) : (X → 2Q1×Q2)→ (X1 → 2Q2)

∇M2 (ρ) =
⊕

x∈Dom(ρ)

⊕
s1∈Q1

[xs1 7→ UxM2
(s1)], where UxM2

(s1) = {s2 | 〈s1, s2〉 ∈ ρ(x)}.

Now we extend to the symbolic case the auxiliary lemmata A.1 and A.2.

Lemma A.3 For all M1 = 〈Q1,A1,∆1, ı1〉,M2 = 〈Q2,A2,∆2, ı2〉, ρ, and φ on the EBA
A1 ~ψ1,ψ2

A2, we have that

〈s1, s2〉 ∈ ‖φ‖ρ ⇐⇒ s2 ∈ ‖φ//ψ1,ψ2
s1‖∇M2

(ρ).

Proof. We proceed by induction over φ. The only interesting cases are those for the two
modalities, that is, 〈d〉φ′ and [d]φ′. Each modality only admits three sub-cases depending on
whether d = (d1, 1), d = (d2, 2) or d = (〈d1, d2〉, 3). We show the first case as the other case is
symmetric.

– 〈(d1, 1)〉φ′. In this case 〈s1, s2〉 ∈ ‖〈(d1, 1)〉φ′‖ρ if and only if there exists (s1, ϕ, s′1) ∈ ∆1

such that (ϕ ∧ ¬ψ1)(d1, 1) and 〈s′1, s2〉 ∈ ‖φ′‖ρ. We rewrite it in the following, equivalent
form.

〈s′1, s2〉 ∈
⋃

(s1, ϕ, s′1) ∈ ∆1

(ϕ ∧ ¬ψ1)(d1, 1)

‖φ′‖ρ

Then we apply the induction hypothesis to φ′ and obtain

s2 ∈
⋃

(s1, ϕ, s′1) ∈ ∆1

(ϕ ∧ ¬ψ1)(d1, 1)

‖φ′//ψ1,ψ2
s′1‖∇M2

(ρ) = ‖
∨

(s1, ϕ, s′1) ∈ ∆1

(ϕ ∧ ¬ψ1)(d1, 1)

φ′//ψ1,ψ2
s′1‖∇M2

(ρ)

That is, by Definition 5.7, ‖φ//ψ1,ψ2
s1‖∇M2

(ρ)
.

– 〈(d2, 2)〉φ′. By definition 〈s1, s2〉 ∈ ‖〈(d2, 2)〉φ′‖ρ if and only if there exists (s2, ϕ, s′2) ∈ ∆2

such that (ϕ∧¬ψ2, 2)(d2) holds and 〈s1, s′2〉 ∈ ‖φ′‖ρ. By induction hypothesis this is equiv-

alent to ∃(s2, ϕ, s′2) ∈ ∆2 s.t. (ϕ ∧ ¬ψ2)(d2, 2) holds and s′2 ∈ ‖φ′//ψ1,ψ2
s1‖∇M2

(ρ)
. Since

ψ2 and d2 are given, this formula admits two alternative reductions corresponding to Def-
inition 5.7. If ¬ψ2(d2, 2) holds, it is equivalent to the claim s2 ∈ ‖〈d2〉φ′//ψ1,ψ2

s1‖∇M2
(ρ)

.

Otherwise it reduces to s2 ∈ ‖ff ‖∇M2
(ρ)

= ∅.
– 〈(〈d1, d2〉, 3)〉φ′. By definition 〈s1, s2〉 ∈ ‖〈(〈d1, d2〉, 3)〉φ′‖ρ if and only if there exist

(s1, ϕ1, s′1) ∈ ∆1 and (s2, ϕ2, s′2) ∈ ∆2 such that both (ϕ1 ∧¬ψ1)(d1) and (ϕ2 ∧¬ψ2)(d2)
hold and 〈s′1, s′2〉 ∈ ‖φ′‖ρ. When ψ2(d2, 2) does not hold, this reduces to the false statement
(since a synchronization transition labeled with d2 cannot occur). Otherwise, we apply the
induction hypothesis to obtain

s2 ∈
⋃

(s1, ϕ1, s′1) ∈ ∆1

(ϕ1 ∧ ¬ψ1)(d1, 1)

‖〈d2〉φ′//ψ1,ψ2
s′1‖∇M2

(ρ) = ‖
∨

(s1, ϕ, s′1) ∈ ∆1

(ϕ ∧ ¬ψ1)(d1, 1)

〈d2〉φ′//ψ1,ψ2
s′1‖∇M2

(ρ).

Lemma A.4 For all M1 = 〈Q1,A1,∆1, ı1〉,M2 = 〈Q2,A2,∆2, ı2〉, ρ : X → 2Q1×Q2 , and Φ
on the EBA A1 ~ψ1,ψ2

A2, we have that

∇M2 (‖Φ‖ρ) = ‖Φ//ψ1,ψ2
M1‖∇M2

(ρ).

32 Gabriele Costa et al.

Proof. We proceed by induction on the structure of Φ.

– Base case: Φ = ε. Trivial.
– Induction step: Φ = x =π φ;Φ′. By definition, ‖Φ‖ρ = [x 7→ U∗] ◦ ‖Φ′‖

ρ◦[x 7→U∗] where U∗

is the fixed point computed according to Definition 3.5. Thus, we have that ∇M2
(‖Φ‖ρ) =

∇M2 ([x 7→ U∗] ◦ ‖Φ′‖
ρ◦[x7→U∗]) = ∇M2 ([x 7→ U∗]) ◦ ∇M2 (‖Φ′‖

ρ◦[x 7→U∗]). By the induc-

tion hypothesis, this reduces to

∇M2 ([x 7→ U∗]) ◦ ‖Φ′//ψ1,ψ2
M1‖∇M2

(ρ)◦∇M2
([x 7→U∗]). (3)

By Definition A.2, ∇M2
([x 7→ U∗]) =

⊕
s∈Q1

[xs 7→ U∗M2,s
] where U∗M2,s

= {s′ | 〈s, s′〉 ∈

U∗}. By replacing U∗ with its definition we obtain

U∗M2,s
= {s′ | 〈s, s′〉 ∈ πU.(‖φ‖ρ◦R(U))},

which we rewrite to
U∗M2,s

= πU.{s′ | 〈s, s′〉 ∈ ‖φ‖ρ◦R(U)}.

By Lemma A.3, this is equivalent to

U∗M2,s
= πUM2,s.(‖φ//ψ1,ψ2

s‖∇M2
(ρ)◦∇M2

(R(U))),

where ∇M2
(R(U)) = ∇M2

([x 7→ U] ◦ ‖Φ′‖
ρ◦[x7→U]

). By induction hypothesis and by Def-

inition A.2, we have⊕
s∈Q1

[xs 7→ UM2,s] ◦ ∇M2
(‖Φ′‖

ρ◦[x7→U]
) =⊕

s∈Q1

[xs 7→ UM2,s] ◦ ‖Φ′//ψ1,ψ2
M1‖∇M2

(ρ) ◦
⊕

s∈Q1

[xs 7→UM2,s
]
.

As a consequence, we rewrite (3) to⊕
s∈Q1

[xs 7→ U∗M2,s
] ◦ ‖Φ′//ψ1,ψ2

M1‖∇M2
(ρ) ◦

⊕
s∈Q1

[xs 7→U∗M2,s
],

which, after repeatedly applying Definition 3.5 to each element s ∈ Q1 reduces to
‖Φ//ψ1,ψ2

M1‖∇M2
(ρ)

.

As expected, the lemmata above directly imply the following corollary.

Corollary A.2 For all M1 = 〈Q1,A1,∆1, ı1〉,M2 = 〈Q2,A2,∆2, ı2〉, ρ : X → 2Q1×Q2 , x
and Φ on the EBA A1 ~ψ1,ψ2

A2, we have that

〈s1, s2〉 ∈ ‖Φ‖ρ(x)⇐⇒ s2 ∈ ‖Φ//ψ1,ψ2
M1‖∇M2

(ρ)(x1).

Theorem 5.1 For all M1 = (Q1,A1,∆1, ı1),M2 = (Q2,A2,∆2, ı2), x, and Φ on the EBA
A1 ~ψ1,ψ2

A2, we have that

〈〈Φ↓x//ψ1,ψ2
M1〉〉 = PM2

(〈〈Φ↓x〉〉).

Proof. Follows from Corollary A.2.

Theorem 5.2 For all M1 = (Q1,A1,∆1, ı1),M2 = (Q2,A2,∆2, ı2), x, and Φ on the EBA
A1 ~ψ1,ψ2

A2, we have that

M1 ‖ψ1,ψ2
M2 |=ς Φ↓x (ς ∈ {s, σ})

if and only if any of the following equivalent statements holds:

1. M1 |=ς Φ↓x//ψ1,ψ2
M2 2. M2 |=ς Φ↓x//ψ1,ψ2

M1

3. M1 |=σ PM1
(〈〈Φ↓x〉〉) 4. M2 |=σ PM2

(〈〈Φ↓x〉〉).

Proof. The equivalence between M1 ‖ψ1,ψ2
M2 |=ς Φ ↓x and items 1, 2 immediately follows

from Corollary A.2. Then, the equivalence with items 3 and 4 follows by applying Theorem
5.1 to items 1 and 2.

Natural Projection as Partial Model Checking 33

A.3 Correctness

Below we prove the correctness of our quotienting algorithms. For the LTS quotienting al-
gorithm described in Section 4.1, we show that it is equivalent to the standard quotienting
operator applied to a suitable encoding of an LTS as a specification of the equational µ-calculus.
Then, for the s-LTS quotienting algorithm of Section 5.4 we show its correctness by proving
that it preserves the isomorphism between an s-LTS and its translation into an LTS.

Correctness for LTS Encoding, Given an LTS A = 〈S,Σ,→, si〉, we build a system of
equations as follows:

ΦA = {xs1 =µ A(s1); . . . ;xsn =µ A(sn)},

where S = {s1, . . . , sn} and A(s) =
∧
s6
b−→

[b]ff ∧
∧

s
a−→s′

[a]xs
′
.

Thus we define the top assertion of the formula derived from A as ΦA ↓ xsi .
Quotienting. Starting from the inputs of quotient, we evaluate ΦP ↓ xiP //ΣBA. The result-
ing equations system is

Φ′ =



xs1r1 =µ A(s1)//ΣB r1
· · ·

x
si
rj =µ A(si)//ΣB rj

· · ·
xsnrm =µ A(sn)//ΣB rm

with all the equations of the following form, where α ∈ ΣA \ Γ , β ∈ ΣB \ Γ and γ ∈ Γ .

xsirj =µ

(1)︷ ︸︸ ︷∧
si 6
a−→

rj
a−→r′

ff ∧

(2)︷ ︸︸ ︷∧
si 6
a−→

rj 6
a−→

[a]ff ∧

(3)︷ ︸︸ ︷∧
si
α−→s′

rj
α−→r′

xs
′
r′ ∧

(4)︷ ︸︸ ︷∧
si
β−→s′

[β]xs
′
rj
∧

(5)︷ ︸︸ ︷∧
si
γ−→s′

rj
γ−→r′

[γ]xs
′
r′ .

Trivially, the equation system described above corresponds to the non-deterministic tran-
sition system obtained by the quotient algorithm. A state (s, r) results in a variable associated
to an assertion that characterizes the outgoing transitions distinguishing among (1) a is re-
quired but not done, (2) a is not allowed, (3) λ moves, (4) ΣB , and (5) Γ actions.
Correctness. To conclude, we show that all the steps of the algorithms described above
correspond to valid transformations, i.e., they preserve equivalence. A detailed description of
the first two transformations can be found in [3].

– Constant propagation is applied to remove equations of the form x =µ ff . This step is
carried out by the quotient algorithm when removing the corresponding states from the
transition system.

– Unguardedness removal carries out the following transformation.
x =µ ϕ
...
y =µ ϕ′

becomes


x =µ ϕ{ϕ′/x}
...
y =µ ϕ′

All the occurrences of y in the first equation are replaced with the assertion associated to
y. Note that this transformation only applies if all the occurrences of y are unguarded,
i.e., not under the scope of any modal operator, in the first equation. Also, we extend it
to remove redundant recurrences, namely we transform x =µ ϕ ∧ x in x =µ ϕ. In our
algorithm, this operation corresponds to a λ-closure.

– Variable introduction requires more attention. It is simple to verify that the previous
transformations do not preserve the structure of our equations. Indeed, unguardedness
removal can introduce in the assertions more instances of the same action modality, while
we require exactly one. Concretely, the assertions have the form

x =µ [a]va1 ∧ . . . ∧ [a]vak ∧ [b]vb1 · · · ,

34 Gabriele Costa et al.

where v stands for either a variable or ff . If some of the vai are equal to ff , [a](va1 ∧ . . . ∧ vak)
reduces to [a]ff . Otherwise, we rewrite it as x =µ [a](y1 ∧ . . . ∧ yk) ∧ [b](. . .). Thus, we
replace the conjunctions of variables with [a](y{1,...,k}) and we introduce a new equation

y{1,...,k} =µ y1 ∧ . . . ∧ yk. Clearly, the number of these new variables is bounded by 2|S|.
This transformation, plus unguardedness removal, corresponds to the ∧-move operation.
It is simple to see that these transformations restore the format of our encoding, thus
denoting an LTS that is the output of our algorithm.

Correctness for s-LTS The proof consists of two steps. We start by defining a translation
procedure from an s-LTS M to an isomorphic LTS AM . Our translation is based on the
standard Minterms construction algorithm (see [16] for a detailed description). Then, we show
that the symbolic quotienting algorithm applied to the s-LTSs P and M returns an s-LTS
N such that its translation AN is isomorphic to the output of the quotienting algorithm of
Section 4.1 when applied to the translations AP and AM .

We recall the standard definition of Minterms. Let M = 〈A, Q, ı,∆〉 be an s-LTS, and let
F denote the set of predicates labeling the transitions of M . The Minterms of M is the set

Minterms(M) =
⋃
I⊆F
{ϕI =

∧
ϕ∈I

ϕ ∧
∧

ϕ̄∈F\I
¬ϕ̄ | satA(ϕI)}.

Note that since every s-LTS M has a finite number of transitions, the set of Minterms is
finite as well. In particular, for an s-LTS M , the size of Minterms(M) is, in the worst case, 2|∆|

where |∆| is the number of transitions of M . Minterms are used to construct a deterministic
LTS being isomorphic to an s-LTS M . The construction is based on a generic labeling function
f : Minterms(M)→ Σ where Σ is a set of action labels (see Definition 3.1).

Our LTS translation is slightly different. In particular, we construct a labeling function
that can be applied to both the s-LTSs of a product so that synchronous transitions are mapped
to the same symbol. To this end we apply the Minterms construction to the policy s-LTS P .
Recalling that the EBA of P is A ~ψ1,ψ2

B, the definition of Minterms(P) is specialized to

⋃
I⊆F
{ϕI =

∧
〈ϕ1,ϕ2,〈ϕ3,ϕ4〉〉∈I

〈ϕ1, ϕ2, 〈ϕ3, ϕ4〉〉∧
∧

〈ϕ̄1,ϕ̄2,〈ϕ̄3,ϕ̄4〉〉∈F\I
¬〈ϕ̄1, ϕ̄2, 〈ϕ̄3, ϕ̄4〉〉|satA~ψ1,ψ2

B(ϕI)},

which, by definition of ~, reduces to⋃
I⊆F
{ϕI = 〈

∧
ϕ1∈I|1

ϕ̄1∈(F\I)|1

ϕ1∧¬ϕ̄1,
∧

ϕ2∈I|2
ϕ̄2∈(F\I)|2

ϕ2∧¬ϕ̄2, 〈
∧

ϕ3∈I|3
ϕ̄3∈(F\I)|3

ϕ3∧¬ϕ̄3,
∧

ϕ4∈I|4
ϕ̄4∈(F\I)|4

ϕ4∧¬ϕ̄4〉〉|satA~ψ1,ψ2
B(ϕI)},

where I|i is a short hand for {ϕ|i | ϕ ∈ I}.
Note that, by the definition of A ~ψ1,ψ2

B, all the predicates ϕ ∈ F belong to three
distinguished groups, i.e., 〈ϕ|1 ,⊥,⊥〉, 〈⊥, ϕ|2 ,⊥〉 or 〈⊥,⊥, 〈ϕ|3 , ϕ|4 〉〉. Thus, there cannot exist
any ϕI ∈ Minterms(P) such that I contains two or more predicates belonging to different
groups (since the ⊥ elements would cause such predicate to be unsatisfiable). As a consequence,
Minterms(P) preserves these three groups and, possibly, introduces an element for ϕ∅.

Starting from Minterms(P), we define two labeling functions fψ1
A : Minterms(P)→ ΣA ∪

Γ ∪{ωA} and fψ2
B : Minterms(P)→ ΣB∪Γ ∪{ωB} such that ΣA, ΣB , Γ are pairwise disjoint,

ωA 6= ωB and ωA, ωB 6∈ ΣA∪ΣB∪Γ . In addition, we require that whenever ψ ∈ Minterms(P),

fψ1
A and fψ2

B are the smallest functions that satisfy the following conditions:

1. satA(ψ|3 ∧ ψ1) and satB(ψ|4 ∧ ψ2) imply fψ1
A (ψ) = fψ2

B (ψ) ∈ Γ
2. if ψ = ψ∅ then (i) satA(ψ|1 ∨ ψ|3) implies fψ1

A (ψ) = ωA and (ii) satB(ψ|2 ∨ ψ|4) implies

fψ2
B (ψ) = ωB

3. satA(ψ|1 ∧ ¬ψ1) implies fψ1
A (ψ) ∈ ΣA and satB(ψ|2 ∧ ¬ψ2) implies fψ2

B (ψ) ∈ ΣB

Natural Projection as Partial Model Checking 35

Given an s-LTS M = 〈A, Q, ı,∆〉 the LTS isomorphic to M (w.r.t. fψ1
A) is AM = 〈Q,ΣA∪

Γ ∪ {ωA},→, ı〉 where

→=

{p a−→ q | ∃(p, ϕ, q) ∈ ∆,ψ ∈ Minterms(P) s.t. fψ1
A (ψ) = a ∈ ΣA and satA(ϕ ∧ ψ|1 ∧ ¬ψ1)} ∪

{p γ−→ q | ∃(p, ϕ, q) ∈ ∆,ψ ∈ Minterms(P) s.t. fψ1
A (ψ) = γ ∈ Γ and satA(ϕ ∧ ψ|3 ∧ ψ1)} ∪

{p ωA−−→ q | ∃(p, ϕ, q) ∈ ∆,ψ ∈ Minterms(P) s.t. fψ1
A (ψ) = ωA and satA(ϕ ∧ (ψ|1 ∨ ψ|3))} .

The LTS isomorphic to P is obtained by applying the labeling function f = fψ1
A ∪ f

ψ2
B .

Note that f is defined. In fact, the domain of fψ1
A are the formulas of type 〈ϕ|1 ,⊥,⊥〉

or 〈⊥,⊥, 〈ϕ|3 , ϕ|4 〉〉, whereas the domain of fψ2
B are the formulas of type 〈⊥, ϕ|2 ,⊥〉 or

〈⊥,⊥, 〈ϕ|3 , ϕ|4 〉〉 (see above). Moreover, the two functions map the formulas belonging to
the intersection of their domains to the same values. The only exception is for ϕ∅. Indeed

fψ1
A (ϕ∅) = ωA 6= ωB = fψ2

B (ϕ∅). Nevertheless, we can simply ignore this case as, by construc-

tion, ∀s.s 6 ωA−−→ and s 6 ωB−−→, that is, none of the transitions of P can occur when ϕ∅ is true.
Thus the LTS isomorphic to P = 〈A ~ψ1,ψ2

B,Q, ı,∆ is AP = 〈Q,ΣA ∪ΣB ∪ Γ,→, ı〉 where

→= {p f(ψ)−−−→ q | ∃(p, ϕ, q) ∈ ∆,ψ ∈ Minterms(P) s.t. satA(ϕ ∧ ψ)}

To finish, we must show that, given isomorphic inputs, the two algorithms generate isomor-
phic outputs. To do that we prove that each step of the algorithms preserves the isomorphism.
The first step is to show the mapping between the three transition functions of the symbolic
quotienting algorithm, i.e., ∆̄λ, ∆̄B and ∆̄∗, and the three cases of quotienting algorithm, see
Table 2 line 3.

1. ((qP , qM), ψM ∧ ψP |1 ∧ ¬ψ1, (q′P , q
′
M)) ∈ ∆̄λ implies ((qP , qM), λ, (q′P , q

′
M)) ∈ →.

Since satA(ψM ∧ ψP |1 ∧ ¬ψ1) there must exist at least one ψ̂ ∈ Minterms(P) such

that (i) both satA(ψ̂|1 ∧ ψP |1 ∧ ¬ψ1) and satA(ψM ∧ ψ̂|1), (ii) fψ1
A (ψ̂) = a ∈ ΣA.

By definition, qP
a−→ q′P and qM

a−→ q′M are transitions of AP and AM , which implies
((qP , qM), λ, (q′P , q

′
M)) ∈ →.

2. ((qP , qM), ψP |2∧¬ψ2, (q′P , qM)) ∈ ∆̄B implies ((qP , qM), a, (q′P , qM)) ∈→ (with a ∈ ΣB).

We know that satB(ψP |2 ∧ ¬ψ2). Hence, there exists some ψ̂ ∈ Minterms(P) such that

satB(ψ̂|2 ∧ ψP |2 ∧ ¬ψ2). By definition, fψ2
B (ψ̂) = a ∈ ΣB which implies qP

a−→ q′P and,

thus, ((qP , qM), a, (q′P , qM)) ∈ →.

3. ((qP , qM), ψP |4 ∧ ψ2, (q′P , q
′
M)) ∈ ∆̄∗ implies ((qP , qM), a, (q′P , q

′
M)) ∈ → (with a ∈ Γ).

Since ((qP , qM), ψP |4 ∧ψ2, (q′P , q
′
M)) ∈ ∆̄∗ we have that there exists (qM , ψM , q

′
M) ∈ ∆M

such that satA(ψM ∧ ψP |3 ∧ ψ1) holds (Table 4, line 5). Thus there is a ψ̂ ∈ Minterms(P)

such that fψ1
A (ψ̂) = a ∈ Γ and satA(ψ̂|3 ∧ ψM ∧ ψP |3 ∧ ψ1) and, consequently, qM

a−→ q′M .

Moreover, since a ∈ Γ we have that fψ2
B (ψ̂) = a which implies satB(ψ̂|4 ∧ ψP |4 ∧ ψ2).

From satA(ψ̂|3 ∧ ψM ∧ ψP |3 ∧ ψ1) we infer satA(ψ̂|3 ∧ ψP |3 ∧ ψ1) which, together with

satB(ψ̂|4 ∧ ψP |4 ∧ ψ2), implies that qP
a−→ q′P .

Now we show that the procedures unify preserves the isomorphism between the transitions.
This requires proving the same property for the procedures ∧-move and close. The latter
is a trivial consequence of the isomorphism between the transitions in ∆̄λ and the λ transi-
tions proved above. A similar argument applies to ∧-move. Indeed we only need to show that

(q, ϕ′, q′) and satB(ϕ ∧ ϕ′) ∈ ∆̄B ∪ ∆̄∗ if and only if q
a−→B q′ where fψ2

B (ϕ) = a. Again, this
follows from the transition isomorphism.

To conclude, we observe that there is a plain correspondence between the steps of the two
unify procedures with the exception of line 6. However, the transition isomorphism provides
us with the required correspondence. This holds because Minterms(P) is tripartite in a way
that the elements of each partition are mapped to Γ , ΣB \Γ , and ΣA \Γ . Thus, the restriction
to their second and fourth components limits this mapping to ΣB (note that ωB cannot occur
on the transitions of B as ϕ∅ is never satisfied when in conjunction with any other predicate).

36 Gabriele Costa et al.

A.4 Complexity

We estimate the worst case complexity of the quotient algorithm of Section 4. For simplicity,
we assume that |Γ | = |ΣA \ Γ | = |ΣB \ Γ | = m and |SA| = |SP | = n. The first part, i.e., the
generation of the non-deterministic transition system, requires at most |→P | · |→A | ≤ n4m2

steps (since both P and A have at most n2m transitions). The resulting transition system has
at most n2 states.

Concerning unify, we first observe the following facts. The algorithm works on the λ-
closures of the states of the non deterministic transition system B. Similarly to the ε-closures
of an NFA, they can be computed in advance (see [24]). The cost is cubic with respect to the
number of states, i.e., O(n6) in our case. The total number of closures is bounded by n2.

At each step, ∧-move computes the sets of the reachable states with a transition labeled
by a 6= λ, starting from one of the closures (which has size at most n2). Since B is built from P
and A, both deterministic, for each symbol a and pair of states there is at most one transition
labeled with a. Thus, having n2 states and 2m symbols in ΣB , there are no more than 2n4m
ΣB-transitions. Thus, in 2n4m we obtain the set on which we compute the λ-closure. Recall
that we already computed them, so we just need to select the required one.

To conclude, we observe that ∧-move is iterated at most n2m times. Indeed, if q, q′ ∈ λ-

close({q̂}) such that q 6= q′ and q
a−→ q′ (for some a ∈ ΣB) then q 6∈ λ-close(q′). Therefore,

the number of λ-closures stored in S, and thus the algorithm iterations cannot exceed n2 · 2m.
Hence, the overall complexity is O(2n4m · n2 · 2m) = O(n6m2).

We already discussed in Section 5 the complexity of the symbolic quotienting algorithm.

	Introduction
	A running example: a GPU kernel
	A General Framework
	Quotienting Finite-State Systems
	Quotienting Symbolic Finite-State Systems
	Related Work
	Conclusion
	Technical Annex

