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Abstract. Machine Learning is enjoying an increasing success in many applications: medical, market-
ing, defense, cyber security, transport. It is becoming a key tool in critical systems. However, models are
often very complex and highly non-linear. This is problematic, especially for critical systems, because
end-users need to fully understand decisions of an algorithm (e.g. why an alert has been triggered, why
a person has a high probability of cancer recurrence,. . . ). One solution is to offer an interpretation
for each individual prediction based on attribute relevance. Shapley Values allow to distribute fairly
contributions for each attribute in order to understand the difference between a predicted value for an
observation and a base value (e.g. the average prediction of a reference population). They come from
cooperative game theory. While these values have many advantages, including their theoretical guar-
antees, they are however really hard to calculate. Indeed, the complexity increases exponentially with
the dimension (the number of variables). In this article, we propose two novel methods to approximate
these Shapley Values. The first one is an optimization of an already existing Monte Carlo scheme. It
limits the call to the prediction function of the Machine Learning model. The second method is based on
a projected gradient stochastic algorithm. We prove for the second approach some probability bounds
and convergence rates for the approximation errors according to the learning rate type used. Finally, we
carry out experiments on simulated datasets for a classification and a regression task. We empirically
show that both approaches outperforms the classical Monte Carlo estimator in term of convergence
rate and in term of call to the prediction function, which is the bottleneck point in the estimation of
Shapley Value for our application.

Keywords: Feature Importance · Interpretability · Shapley Value · Monte Carlo · Projected Stochastic
Gradient Descent.

1 Introduction

Nowadays, Machine Learning models are used for various applications with already successful or promising
results. Unfortunately, a common criticism is the lack of transparency associated with these algorithm deci-
sions. This is mainly due to a greater interest in performance (measurable on specific tasks) at the expense
of a complete understanding of the model. This results in a lack of knowledge of the internal workings of the
algorithm by both the developer and the end user. The most obvious consequences are firstly a difficulty to
correct the algorithm by an expert (different assumptions, removing outliers, adding new variables or diverse
samples). Secondly, limiting its adoption by operational staff. There is even an urgent need for an explainable
Artificial Intelligence (AI). Indeed, beyond these first reasons, the European Commission has imposed by
legal means, with the General Data Protection Regulation, this transparency constraint on companies whose
algorithms learn from personal data coming from European citizens. The challenge facing companies today
is that of bringing AI into production. The transition from conclusive laboratory tests (Proof of Concept)
to a production environment is not easy. To ensure that the model generalizes well on new data, a good
human/machine interaction is highly appreciated.

There is no single definition of interpretability or explainability concerning model prediction (e.g. see the
excellent introductory book [22]). Therefore, there are several ways to proceed. Assessing them objectively is
a real problem because we do not have unanimous criteria. Most studies analyze the feedback from a panel of
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individuals, expert or not, to demonstrate the contribution of a method in terms of understanding. Methods
are rarely compared directly with each other, but rather against a lack of interpretation of algorithm deci-
sions. However, some references try to create quantitative indicators to evaluate the complexity of a model
[21].

We can however separate methods into two dimensions [4]. If the method is local or global, and if its
approach is agnostic to the model or on the contrary inherent. A global method aims at explaining the
general behaviours of a model, whereas a local method focuses on each decision of the model from an input
individual. The agnostic category (also called post-hoc explanation) considers the model as a black box.
On the other hand, inherent or non-agnostic methods can modify the structure of a model or the learning
process to create intrinsically transparent algorithms. Naturally, the best strategy is to find a model that
is both completely transparent by design and sufficient in terms of performance. Unfortunately, the most
effective machine learning models tend to be less transparent because their degrees of complexity are high
(e.g. gradient trees, deep learning, kernel methods).

In this study, the method we are trying to improve is agnostic and local. This choice confers several
advantages. First of all, the approach makes it possible to create a reusable generic module for different
use cases (this is the agnostic aspect). Then, a local interpretation can be generalized to the global level by
considering a set of well-chosen individual decisions. On the other hand, the complexity of such approaches
is more important and therefore hinders applications where transparent decision making is done in real time.
The objective of this work is precisely to speed up the calculation of these explanations.

Fig. 1: Attribute Relevance. Illustration from the SHAP. library [18]

For local explanation in Machine Learning, many methods have been proposed but the one based on
Shapley Values [29] is gaining popularity (see Figure 1 for an illustration from the popular SHAP library
[18]). This is largely explained by the well-established theory behind these values, with the guarantee that
they respect a number of interesting properties in our context, as explain in Section 2. In addition, there is no
assumption made about feature independence. Shapley Values are derived from cooperative game theory and
depend on the definition of a game. This is why we encounter several slightly different versions of Shapley
Values in the context of attribute importance ([20]; [14]). However, Shapley Values have an unpleasant draw-
back: the computation cost grows exponentially with the number of features. For instance, if the dimension
is 30, that is to say 30 features, we must take into account 230 coalitions and for each coalition perform 2
evaluations of the reward function. A dimension greater than 30 is common for Machine Learning problems.
Several approaches have been proposed to approximate Shapley Values. Most of them are stated in articles
from the Operational Research and Game Theory communities in different contexts. In this study, we will
be focus only on methods related to feature attributions in Machine Learning. [8] worked on the estimation
of Shapley Values when the data is structured (e.g. images, sentences, etc.). This relationship can look like
chains or grids for example. The authors propose two approaches they call L-Shapley and C-Shapley. Be-
cause the features can be represented by a graph, we can use the notion of neighbor to limit the number of
coalitions to be considered for the calculation of a Shapley Value per player. In L-Shapley, we consider all
coalitions with entities whose distance is less than k from the given feature, k being a parameter chosen.
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With C-Shapley, coalitions are taken into account if their distance is less than k but also if they have a direct
link with the player. Other authors have proposed algorithm-specific approaches. For instance, [9] and [16]
present DeepSHAP, a Shapley Value approximation for Deep Learning. It is an adaptation of Deep LIFT [30].
In [17], authors propose an approximation to compute Shapley Value for tree based model (e.g. Random
Forest [5], Gradient Tree Boosting [13]). In the context of Federated Learning, [36] give another Shapley
Value approximation technique. We use Federated Learning when several entities collaborate together to
train a model on distributed datasets, but do not want to share their data. In [36], they focus on a process
where each member of the coalition train a model, and then a meta-model is learned. They are also dealing
with Vertical Federated Learning, where there are many overlapped instances but few overlapped features
(e.g. insurer and online retailers). Their objective is twofold: find the importance of each feature and preserve
the confidential information of each partner. Their article propose an adaptation of [16] in this context. [34]
formalize the use of Shapley Value for Machine Learning, in particular individual prediction explanation. All
these previous approximation approaches have been used in specific contexts (Federated Learning, structured
dataset) or models (Deep Learning, Tree-based model). We are interested in more generic cases. [32] propose
an approach based on a Monte Carlo estimator which has solid theoretical background. [16] and [1] rewrite
Shapley Value computation as a weighted least square problem.

After having defined Shapley Value in Section 2, we propose two novel techniques for approximating
Shapley Values, based on the works from [32] and [16]. In Section 3, we define a method based on an
optimization of the Monte Carlo estimator of [32]. In Section 4, we use a projected stochastic gradient
algorithm to solve the weighted least square problem of [1] and [16]. We give the theoretical properties in
term of approximation errors for the second algorithm. Finally, in Section 5, we compare these two approaches
with the classical Monte Carlo estimator [32] on simulated examples. Empirically, we observe that the time
spent by calling the machine learning model prediction is often the bottleneck of estimation methods (in an
agnostic approach). That is why the number of reward function evaluations, which rely on model predictions,
is a good element of comparison between these methods. This point drives us for the theoretical and empirical
studies. Moreover, since the true Shapley Values are intractable in many cases, theoretical guarantees such
as upper bounds with high probability are essential.

2 Shapley Value in Machine Learning

2.1 Shapley Value definition

In Collaborative Game Theory, Shapley Values ([29]) can distribute a reward among players in a fairly way
according to their contribution to the win in a cooperative game. We note M a set of d players. Moreover,
we note v : P (M) → Rv a reward function such that v(∅) = 0. The range Rv can be < or a subset of
<. In Section 1.2. we express Rv in the context of Machine Learning. P (M) is a family of sets over M. If
S ⊂M, v(S) is the amount of wealth produced by coalition S when they cooperate.

The Shapley Value of a player j is a fair share of the global wealth v(M) produced by all players together:

φj(M, v) =
∑

S⊂M\{j}

(d− |S| − 1)!|S|!
d!

(v(S ∪ {j})− v(S)) ,

with |S| = cardinal(S), i.e. the number of players in coalition S. The Shapley Values are the only values
which respect the four following properties:

– Additivity: φj(M, v + w) = φj(M, v) + φj(M, w) for all j, with v : P (M)→ Rv and w : P (M)→ Rv;

– Null player: if v(S ∪ {j}) = v(S) for all S ⊂M\{j} then φj(M, v) = 0;

– Symmetry: φΠj(ΠM, Πv) = φj(M, v) for every permutation Π on M;

– Efficiency:
∑
j∈M φj(M, v) = v(M).

When there is no risk of confusion, we will simply write φj instead of φj(M, v) in the rest of document.
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2.2 Shapley Values as contrastive local attribute importance in Machine Learning

In this study we consider the context described in [20] but all the estimation methods presented hereafter
can be extended. Let be X∗ ⊂ <d a dataset of individuals where a Machine Learning model f is trained
and/or tested and d the dimension of X∗. d > 1 else we do not need to compute Shapley Value. We
consider the attribute importance of an individual x∗ = {x∗1, . . . , x∗d} ∈ X∗ according to a given reference
r = {r1, . . . , rd} ∈ X∗. {x∗1, . . . , x∗d} are the attributes of x corresponding to the d features of X∗. We’re
looking for φ = (φj)j∈{1,...,d} ∈ <d such that:

d∑
j=1

φj = f(x∗)− f(r),

where φj is the attribute contribution of feature indexed j. We loosely identify each feature by its column
number. Here the set of players M = {1, . . . , d} is the feature set.
The local explanation is then contrastive because attribute relevance depend on a reference. For Machine
Learning purposes, the range Rv of wealth v could be any real numbers, namely the output of a regression
model, the maximum probability estimated or the individual likelihood in a classification task, anomaly
score for outliers detection, and so on. It could also be a discrete number, for instance the predicted rank in
a ranking problem, a one-loss function for binary or multi-class classification which means that the reward
equals 1 if two instances are in the same class and 0 otherwise.

In Machine Learning, a common choice for the reward is v(S) = E[f(X)|XS = x∗S], where x∗S = (x∗j )j∈S
and XS the element of X for the coalition S.
For any S ⊂M, let’s define z(x∗, r, S) such that z(x∗, r, ∅) = r, z(x∗, r,M) = x∗ and

z(x∗, r, S) = (z1, ..., zd) with zi =

{
x∗i if i ∈ S
ri if i /∈ S .

As explain in [20], each reference r sets a single-game with v(S) = f(z(x∗, r, S)) − f(r), v(∅) = 0 and
v(M) = f(x∗) − f(r). If we sample many references from a dataset with one distribution Dpop, we can
recover the more classical definition of attribute contributions according to a base value Er∼Dpop [f(r)] like
in [16], [32] and [33] by averaging all the Shapley Values of each single game obtained on individuals from
the reference population.

Out of direct interest, estimating E[f(X)|XS = x∗S] is not an easy task. In [14], the authors exhibit two
popular ways using conditional or interventional distributions. Both techniques have their own pro and cons
which lead to different definitions of what attribute relevance should be. When we use a reference r and
create a new instance z(x∗, r, S), we are in the second family. The main drawback is that we assume feature
independence (only for the calculation of v(S)) which can produce “out-of-distribution” samples. On the
other hand, the conditional approach could give non zero contribution to attributes which do not impact the
reward function. It happens when an irrelevant attribute is correlated to relevant ones. Anyway, the methods
that we present here are agnostic of the chosen approach, it can be conditional or interventional. Even if
we use the interventional approach as an illustration, the same techniques will also work by changing the
reward function or the way we estimate v(S).

3 Estimation of Shapley Values by Monte Carlo

The Monte Carlo method and its variants are by far the most commonly used techniques for estimating
Shapley Values. In its classical form, this approach samples random permutations between players (e.g.
see [32], [33], [19]). Our goal is to reduce the number of times the costly reward function is asked. This is
why we propose an optimized version of the algorithm proposed by [32] which divides by two the use of
v (Algorithm 1). This optimization trick has not been explicitly stated in any article dealing with Shapley
Values. Moreover, this strategy can be combined with stratified sampling (see [7], [19]) in order to reduce the
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number of iterations required. Indeed, estimated variances of each player are updated online. Let π({1, . . . , d})
be the set of all ordered permutations of {1, . . . , d} in Algorithm 1.

Data: instance x∗ and r, the reward function v and the number of iterations T.
Result: The Shapley Values φ̂ ∈ <d

initialization φ̂ = {0, . . . , 0} and σ̂2 = {0, . . . , 0} ;
for t=1,. . . ,T do

Choose the subset resulting of an uniform permutation O ∈ π({1, . . . , d}) of the features values ;
a = v(r) ;
b = r ;
for j in O do

b =

{
x∗i if i = j
bi if i 6= j

, with i ∈ {1, . . . , d} ;

c = v(b) ;
φj = c− a ;

if t > 1, σ̂2
j =

t− 2

t− 1
σ̂2
j + (φj − φ̂j)2/t ;

φ̂j =
t− 1

t
φ̂j +

1

t
φj ;

a = c ;

end

end
Algorithm 1: Optimized version of Monte Carlo algorithm.

[19] demonstrate that the estimation error could be bounded with high probability regarding some assump-
tions. These results are still valid for the optimized version.

4 Estimation of Shapley Values by a Projected Stochastic Gradient algorithm

An alternative way to Monte Carlo is to use the equivalence between the initial formulation of the Shapley
values and an optimization problem. Indeed, these values are the only solution of a weighted linear regression
problem with an equality constraint (see [28], [16] and [1]). The convex optimization problem is given by
Equation (1).

argmin
φ∈<d

∑
S∈M,S 6={∅,M}

wS [v(S)−
∑
j∈S

φj ]
2

subject to

d∑
i=j

φj = v(M)

(1)

where the weights wS =
(d− 1)(

d
|S|
)
|S|(d− |S|)

.

There are few resources that specifically address that problem. [16] only mention very briefly its estimation
by a debiased version of Least Absolute Shrinkage and Selection Operator (LASSO, see [35]) without further
details. It is finally [1] who formalize more finely the resolution of this weighted linear regression. The weighted
sum takes into account all the coalitions, including therefore M and ∅ with infinite weights wM = w∅ =∞
(in practice these weights are set by a high constant). There is no equality constraint since it is ensured by
the infinite weight wM. The function to be minimized is reformulated as a weighted least square problem,
which basically has a unique solution. Because of the high dimension (again, exponential with the number of
features), [1] propose to sample the coalitions used according to coalition weights to reduce the dimension.
Unfortunately, we have no information on the error made by considering only a sub-sample of all coalitions.
The authors recommend the largest possible value for that sub-sample size, however this results in a costly
computation. The new method that we propose and detail in this paper aims to continue the work initiated
by these authors on the estimation of Shapley Values by solving this weighted linear regression problem.
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4.1 Solving by a Projected Stochastic Gradient algorithm

Our goal is to reduce the number of coalitions used and then the reward function evaluations while controlling
the estimation error. The function we want to minimize is:

F (φ) = (Xφ− Y )TW (Xφ− Y ) =
1

n

n∑
i=1

nwi(yi − xi
Tφ)2 =

1

n

n∑
i=1

gi(φ),

where n = 2d− 2 is the number of all coalitions except the full and the empty coalitions, W = diag(wS) is a
diagonal matrix of size n×n whose diagonal elements are the weights wS without S = ∅ orM. X is a binary
matrix of size n× d representing all coalitions (except null and full coalitions): each element in the column
j of the row i is equal to 1 if the player j is in the coalition i, 0 otherwise. xi correspond to the i-th column
of X. Y = (yi)i∈{1,...,n} is a vector of size n with yi = v(S) where S is the i-th coalition. We assume that for
all i ∈ {1, . . . , n}, |yi| < C, with C > 0 a constant. In our configuration v(S) = (v(z(x∗, r, S))− v(r)), each
coalition S is indexed by an integer i.
We denote K1 = {φ;

∑d
j=1 φj = v(M)} and K2 = {φ; ‖φ‖ ≤ D}. F is a µ-strongly convex function defined

on a convex set:

K = {φ;

d∑
j=1

φj = v(M) ; ‖φ‖ ≤ D} = K1 ∩K2,

with D > 0 a constant which is required to demonstrate the theoretical performance in Section 4.2, but in
practice it can be large enough. This allows to avoid large gradient norm, but it can be removed by using small
learning rate. The convex set K1 ensures that the solution respects the equality constraint

∑d
j=1 φj = v(M).

This optimization problem has a unique solution φ∗ which is the Shapley Values if D is chosen such that
||φ∗|| ≤ D.
We denote φt = (φti)i∈{1,...,d} the Shapley Values at the iteration t. We also define it ∼ Un({1, . . . , n}), with
Un({1, . . . , n}) a discrete uniform distribution with support {1, . . . , n}, the coalition randomly draw for the
iteration t. To find the unique minimum of F on K, the Projected Stochastic gradient algorithm at each
iteration t follows the rules:

it ∼ Un({1, . . . , n}),
φt = ProjK(φt−1 − γt∇git),

where

– γt is a constant or decreasing step-size (also called the learning rate). ∀t, γt > 0;
– ProjK is the orthogonal projection on K;
– E[∇git |Ft−1] is a gradient of F at φt−1. Ft−1 is the σ-field generated by x1, y1, ..., xt−1, yt−1;

– E[‖∇git‖
2
] ≤ B2 (finite variance condition). B > 0.

For each iteration t, we need to find the orthogonal projection of φt ∈ <d onto the convex set K1 ∩K2 = K
where K1,K2 are convex sets. Dykstra’s algorithm ([6], Algorithm 2) can be used because we know how to
project onto the sets K1 and K2 separately. For φt ∈ <d, if φt does not belong to either K1 or K2:

ProjK1
(φt) = φt −

∑
j φ

t
j − v(M)

d
,

ProjK2
(φt) = φt ×

D

‖φt‖
.

4.2 Properties

Upper bound B of stochastic gradient norm Considering ∇git = 2n(wit < xit ,φt−1 > xit−wityitxit)
and applying triangle inequality leads to:

‖∇git‖ ≤ 2n (‖wit < xit ,φt−1 > xit‖+ ‖wityitxit‖)

≤ 2n (|wit | ‖φt−1‖ ‖xit‖
2

+ |wit ||yit | ‖xit‖)
≤ 2nwit ‖xit‖ (D ‖xit‖+ C). (2)
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Data: instance φt ∈ <d, ProjK1
and ProjK2

and the maximum number of iterations L.
Result: the orthogonal projection of φt onto K
initialization: α1 = φ and p1 = q1 = 0;
for l=1,. . . ,L do

βl = ProjK2
(αl + pl);

pl+1 = αl + pl − βl;
if ProjK1

(βl + ql) = αl then
break;

else
αl = ProjK1

(βl + ql);

ql+1 = βl + ql − αl;

end

end
return αl

Algorithm 2: Dykstra’s algorithm 2.

We introduce Lit such that Lit = 2nwit ‖xit‖ (D ‖xit‖+C). Lit only depends on the chosen coalition it and

‖xit‖
2

equals the number of players for that coalition. Hence Lit is maximum when the number of players is

d− 1 with wit =
1

d
. That is why:

E
[
‖∇git‖

2 ] ≤ E[L2
it ] ≤

[
2n

√
d− 1

d
(
√
d− 1D + C)

]2
.

This upper bound can be improved by using Importance Sampling. If we consider a discrete distribution p
on [0, 1]n:

F (φ) = (Xφ− Y )TW (Xφ− Y ) =
1

n

n∑
i=1

gi(φ) =

n∑
i=1

pi (npi)
−1gi(φ),

∇F (φ) =

n∑
i=0

pi (npi)
−1∇gi(φ) = Eit∼p

[
(npit)

−1∇git(φ)
]
.

We want to find a distribution p such that Eit∼p
[ ∥∥(npit)

−1∇git(φ)
∥∥2 ] is better bounded (e.g.[37]). As we

already showed in Equation (2), ‖∇git‖ ≤ Lit and a suggested distribution is:

pi =
Li∑n
j=1 Lj

,∀i = 1, . . . , n.

For each coalition i, Li = 2nwi
√
li(D
√
li + C) where li is the number of attributes in that coalition. Then

we get:

Eit∼p
[ ∥∥(npit)

−1∇git(φ)
∥∥2 ] =

1

n2

n∑
i=1

(pi)
−1 ‖∇gi(φ)‖2

≤ 1

n2

n∑
i=1

∑
j Lj

Li
L2
i

≤
(∑

j Lj
)2

n2
.

Actually, we do not have to compute Li for all coalitions because Li only depends on the size of the ith

coalition . For all ith coalitions whose size is l ∈ {1, ..., d − 1}, Li = 2n
(d− 1)(
d
l

)
l(d− l)

√
(l)(D

√
(l) + C). By

denoting Ll = 2n
(d− 1)(
d
l

)
l(d− l)

√
(l)(D

√
(l) + C) for every size l, we get

∑
j Lj =

∑d−1
l=1

(
d
l

)
Ll.
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∑
j

Lj = 2n

d−1∑
l=1

(
d

l

)
(d− 1)(
d
l

)
l(d− l)

√
l(
√
lD + C) = 2n

d−1∑
l=1

d− 1√
l(d− l)

(
√
lD + C).

Finally, let’s define B such that B2 =

(∑
j Lj

)2
n2

= 4
[∑d−1

l=1

d− 1√
l(d− l)

(
√
lD + C)

]2
. We have found an

upper bound for the stochastic gradient norm:

Eit∼p
[ ∥∥(npit)

−1∇git(φ)
∥∥2 ] ≤ B2

Note that we have removed n from the previous upper bound of gradient norm. We will use this new estimator
of gradient F and then the Projected Stochastic gradient algorithm becomes:

it ∼ p,
φt = ProjK(φt−1 − γt (npit)

−1∇git),

at each iteration t with p is the distribution chosen above.

Strongly convex constant µ F is a µ-strongy convex function. We know that µ is the smallest eigenvalues
of the Hessian of F : ∇2F (φ) = XTWX which does not rely on φ. We can demonstrate that µ = 1− 1/d.

XTWX(d,d) =


a c · · · c
c a · · · c
...

...
. . .

...
c c · · · a

 = (a− c)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

+ c


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = (a− c)Id + cJd,

where a =
∑d−1
k=1

(
d−1
k−1
)
wk and c =

∑d−1
k=2

(
d−2
k−2
)
wk.

The eigenvalues of Jd are 0 (order d − 1) and d (order 1). If z is an eigenvector of Jd associated to the
eigenvalue λ, then XTWXz = ((a− c)Id + cJd)z = ((a− c) + cλ)z. That is why eigenvalues of XTWX are
(a− c) and (a− c) + cd. The smallest one is a− c and thus by definition µ = a− c. We can then prove that
a− c = 1− 1/d. Full details of that demonstration are given in appendix 8.

Convergence rate For the sake of clarity, we will denote κ =
B

µ
= 4

∑d−1
l=1

d√
l(d− l)

(
√
lD + C).

It has been proved in [15] that if we choose an inverse decreasing step-size γt =
2

µ(t+ 1)
, with t ∈ {1, . . . , T},

T being the number of iterations, we get the following convergence rate:

F (φ̄T )− F (φ∗) ≤ 2B2

µT
,

where φ̄T =
2

(T + 1)(T + 2)

∑T
t=0(t+ 1)φt. In practice, these averaging is updated online with:

φ̄T = (1− ρt)φ̄T−1 + ρtφt, where ρt =
2

(t+ 2)

As F is µ-strongly convex, we have the following inequality for all x,y ∈ <d:

F (y) ≥ F (x) +∇F (x)T (y − x) +
µ

2
‖y − x‖2 .

In particular if x = φ∗, the unique solution, ∇F (φ∗) = 0 and ‖y − φ∗‖2 ≤ 2

µ
(F (y)−F (φ∗)) for any y ∈ Rd.
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That is why:

E
[ ∥∥φ̄T − φ∗∥∥2 ] ≤ 4B2

µ2T
=

4κ2

T
= O(

1

T
).

With a square root decreasing step-size γt =
2D

B
√
t

and φ̄T =
1

T

∑T
t=0 φt (e.g. [3]): F (φ̄T )−F (φ∗) ≤ 2DB√

T
.

Then

E
[ ∥∥∥φ̄T − φ∗2

∥∥∥ ] ≤ 4DB

µ
√
T

=
4Dκ√
T

= O(
1√
T

).

For a constant step size γ <
1

µ
=

d

d− 1
(see [12]), we get:

E
[
‖φT − φ∗‖2

]
≤ (1− γµ)T ‖φ0 − φ∗‖2 +

γB2

µ
= O(ρT ) +O(γ),

where ρ = 1− γµ and φ0 the initial value used for the stochastic gradient algorithm. It is a fast convergence
towards an imprecise solution that we can control.

High-Probability bounds In order to obtain high-probability bounds for projected stochastic gradient

descent algorithm (SGD), we can use either the Markov Inequality: ∀a ≥ 0, P(Z ≥ a) ≤ E[Z]

a
, with Z

being random variable, or the deviation inequality: ∀a,A ≥ 0, E[Z] ≤ A⇒ P(Z ≥ A(2 + 4a)) ≤ 2e−a
2

(see
[3],[23],[24]). In the following we choose the deviation inequality and let the results obtained by the Markov
Inequality in appendix.
For the inverse decreasing step-size, we obtain (with the appropriate φ̄T defined before):

P
(∥∥φ̄T − φ∗∥∥2 ≥ ε) ≤ 2 exp(− 1

16
[
εT

16κ2
− 2]2) for all ε > 0.

In a same manner, with the square root decreasing step-size we get:

P
(∥∥φ̄T − φ∗∥∥2 ≥ ε) ≤ 2 exp(− 1

16
[
ε
√
T

8Dκ
− 2]2) for all ε > 0.

Considering a constant step-size leads to:

P
(
‖φT − φ∗‖2 ≥ ε

)
≤ 2 exp

(
− 1

16

[
ε/
(
ρT ‖φ0 − φ∗‖2 +

αB2

µ

)
− 2
]2)

for all ε > 0.

A well suited element of comparison between this method and the Monte Carlo presented in Section 3, is to
consider the number of reward function evaluations. According to this criteria, performing T iterations of
Monte Carlo is equivalent to T × d iterations of stochastic gradient.

5 Experiments

5.1 Simulated dataset

Classification We will use the simulated dataset introduced in the book ”Elements of Statistical Learning”
([13], page 339). The features X1, . . . , Xd are standard independent Gaussian, and the deterministic target
Y is defined by:

Y =

{
1 if

∑d
j=1X

2
j > χ2

d(0.5)

0 otherwise
,

where χ2
d(0.5) is the median of a chi-squared random variable with d degrees of freedom (the sum of d

standard Gaussian squared follows a χ2 probability law). The function v under interest is deterministic.
When two instances are predicted in the same class, the reward function v equals 1 and 0 otherwise.
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Regression We will also use a simulated dataset from the same book ([13], page 401, the Radial example).
X1, . . . , Xd are standard independent Gaussian. The model is determined by:

Y =

d∏
j=1

ρ(Xj),

where ρ: t →
√

(0.5π) exp(−t2/2). The regression function fregr is deterministic and simply defined by

fr: x→
∏d
j=1 φ(xj). For a reference r∗ and a target x∗, we define the reward function vr

∗,x∗

r such as for each

coalition S, vr
∗,x∗

r (S) = fregr(z(x∗, r∗, S))− fregr(r∗).

Procedure We select at random 50 couple of instances x∗ and r∗. For each one, the true Shapley Values are
calculated and estimation errors of the methods under study are stored for several iterations. Some graphs
will sum up the experiments by displaying the mean estimation errors per iteration. For the classification
problem, the instances are sampled from separate classes. Finally, let’s remember that our goal is to use the
fewest number of reward function evaluations as possible while having a good estimation error.

5.2 Comparison between all methods

For the gradient based methods, the initial value φ0 is ProjK1
(0) = {fp(x

∗)− fp(r∗)
d

, . . . ,
fp(x

∗)− fp(r∗)
d

},
with p = class or regr according to the fact we work on the classification or regression task. Furthermore,
we select interesting decreasing step size strategies on out-of-experiment samples (x∗, r∗) and only display
the best ones found.

Dimension 16 We choose at first a dimension d of 16 features which allows us to compute the true Shapley
Values in acceptable time. The total number of coalitions is 65,534. Figure 2 shows the results obtained
for that dimension. All the proposed methods outperform the classical Monte Carlo algorithm both in
classification and regression. The stochastic gradient methods displayed use a constant step size of 0.01 and
a decreasing step size following γt = 0.1/

√
t at each iteration t.

(a) Classification - dimension 16 (b) Regression - dimension 16

Fig. 2: Evolution of the mean squared error norms with the number of reward function evaluations.

Dimension 300 We would like to test the behavior of these approaches when the dimension is quite high.
That is why we generate 300 features. Due to computational constraints we will only study the classification
problem. Indeed Shapley Values collapse towards zero in the regression settings. Because the true Shapley
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Values are intractable, we estimate it with the optimized Monte Carlo technique and a large number of
iterations. We performed 5000 iterations which represent 5000× d reward evaluations.
The mean squared error norms can be observed on Figure 3. The constant step size is 0.001 and the decreasing

step size follows γt =
0.01√
t

. By its design, Monte Carlo techniques update each Shapley Value component

sequentially during one iteration of d reward evaluations. In the meantime gradient based methods could
update several Shapley Values components at each iteration. Thus when the features are dependent, Monte
Carlo approaches need more time to decrease their estimation error compared to the others.

(a) Classification - dimension 300 (b) Classification - dimension 300 - x axis log scaled

Fig. 3: Evolution of the mean squared error norms with the number of function evaluations. The right plot
log scales the x axis.

6 Conclusion

In this article, we propose two novel methods for approximating Shapley Values when we want to interpret
individual predictions of a Machine Learning model. The first one is based on an optimization of a clas-
sical Monte Carlo estimator of Shapley Values. The second one uses a rewrite in the form of a weighted
optimization problem of the Shapley’s value approximation problem, which is solved by projected stochastic
gradient descent algorithm. These estimates offer theoretical guarantees on the error made. Empirically, we
show that both approaches outperform the classical Monte Carlo estimator. We have observed during ex-
periments that when features are less dependent with each other according to the model (that is to say the
estimated model tends to an additive model), then the Monte Carlo methods are better suited while having
less hyper-parameters. But when the model output depends more strongly on attribute associations (like in
the previous simulated classification task), gradient based alternatives offer interesting results. It might be
interesting for the following to study the contribution of mini-batch approaches for the stochastic gradient.
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8 Appendix

Strongly convex constant µ F is a µ-strongy convex function. We know that µ is the smallest eigenvalues
of the Hessian of F : ∇2F (φ) = XTWX which does not rely on φ. We can prove that µ = 1− 1/d. At first,
one can observe that:

XTWX(d,d) =


a c · · · c
c a · · · c
...

...
. . .

...
c c · · · a

 = (a− c)


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

+ c


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

 = (a− c)Id + cJd,

where a =
∑d−1
k=1

(
d−1
k−1
)
wk and c =

∑d−1
k=2

(
d−2
k−2
)
wk.

Indeed, XTWX is a d × d matrix whose (i, j) term is
∑n
l=1

∑n
k=1(xT )ikwklxlj =

∑n
l=1 xliwllxlj because

wkl = 0 if k 6= l. For each coalition l, value of wll only depends of the size of that coalition and the product
xli×xlj equals 1 if features i and j are present in coalition l. Therefore if we denote k the size of one coalition

l, it exists two cases: when i = j we have
(
d−1
k−1
)

possible coalitions of size k which contain feature i (= j).

And if i 6= j there are
(
d−2
k−2
)

coalitions. That is why a =
∑d−1
k=1

(
d−1
k−1
)
wk and c =

∑d−1
k=2

(
d−2
k−2
)
wk. Then:

The eigenvalues of Jd are 0 (order d − 1) and d (order 1). If z is an eigenvector of Jd associated to the
eigenvalue λ, then XTWXz = ((a− c)Id + cJd)z = ((a− c) + cλ)z. That is why eigenvalues of XTWX are
(a− c) and (a− c) + cd. The smallest one is a− c and thus by definition µ = a− c. We can then prove that
a− c = 1− 1/d.

a− c =

d−1∑
k=1

(
d− 1

k − 1

)
wk −

d−1∑
k=2

(
d− 2

k − 2

)
wk

= w1 +

d−1∑
k=2

[

(
d− 1

k − 1

)
−
(
d− 2

k − 2

)
]wk

= w1 +

d−1∑
k=2

(
d− 2

k − 1

)
wk

=

d−1∑
k=1

(
d− 2

k − 1

)
wk

=

d−1∑
k=1

(
d− 2

k − 1

)
(d− 1)(
d
k

)
k(d− k)

=

d−1∑
k=1

(d− 2)!(d− 1)

(k − 1)!(d− k − 1)!
(
d
k

)
k(d− k)

=

d−1∑
k=1

(d− 1)!

(k)!(d− k)!
(
d
k

)
=

d−1∑
k=1

(d− 1)!

d!

=

d−1∑
k=1

1

d

=
d− 1

d
= 1− 1/d.

High-Probability bounds with Markov Inequality
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Decreasing step-size: inverse

P(
∥∥φ̄T − φ∗∥∥2 ≥ ε) ≤ 16

Tε
[

d−1∑
l=1

d√
l(d− l)

(
√
lD + C)]2.

Decreasing step-size: square root

P(
∥∥φ̄T − φ∗∥∥2 ≥ ε) ≤ 8D√

Tε

d−1∑
l=1

d√
l(d− l)

(
√
lD + C).

Constant stepsize

P(
∥∥φ̄T+1 − φ∗

∥∥2 ≥ ε) ≤ (1− α(1− 1/d))T+1

ε
‖φ0 − φ∗‖2 +

α

ε
4[

d−1∑
l=1

√
d(
√
d− 1)√

l(d− l)
(
√
lD + C)]2.
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