
Go With the Flow: Clustering Dynamically-Defined NetFlow Features for
Network Intrusion Detection with DYNIDS

Abstract
The paper presents DYNIDS, a network intrusion detection
approach that flags malicious activity without previous knowl-
edge about attacks or training data. DYNIDS dynamically de-
fines and extracts features from network data, and uses cluster-
ing algorithms to aggregate hosts with similar behavior. All pre-
vious clustering-based network intrusion detection approaches
use a static set of features, restricting their ability to detect
certain attacks. Instead we use a set of features defined dy-
namically, in runtime, avoiding that restriction without falling
into the curse of dimensionality, something that we believe
is essential for the adoption of this kind of approaches. We
evaluated DYNIDS experimentally with an evaluation and a
real-world dataset, obtaining better F-Score than alternative
solutions.

1 Introduction

The unstoppable growth of cyberattacks [16], raises the need
for research in new methods for intrusion detection. Inter-
estingly companies take many days to detect some attacks,
e.g., roughly 58 days to detect Advanced Persistent Threats
(APTs) [25]. This number shows that the large variety of real-
time prevention (e.g., packet filters of different sorts) and de-
tection (e.g., malware detectors) mechanisms deployed do not
provide enough protection, so organizations have to dig into
traffic and logs to search for anomalous patterns in larger win-
dows of time.

Most approaches for configuring intrusion detection systems
(IDS), more specifically network intrusion detection systems
(NIDS) that are the focus of this work, require either knowledge
about attacks (to define signatures/rules) or clean training data
(to configure anomaly detectors) [21]. The first tends to be
incomplete, whereas the second is hard to obtain in systems
in production. Moreover, the constant evolution of attacks and
the inherent dynamism of computer networks create severe
difficulties for traditional NIDSs, letting them unable to detect
novel attacks, or generating a high number of false positives.

A more recent approach to intrusion detection uses ma-
chine learning (ML) techniques, clustering or outlier detection,

to identify entities – typically users or hosts – that have an
anomalous behavior in a period of time, unobservable in real-
time [11–13, 15, 22, 27, 28, 45, 49, 60, 61]. This approach is
interesting because it does not require knowledge about at-
tacks (signatures/rules) or clean training data. However, most
of these approaches suffer from two serious flaws not yet in-
vestigated: (1) they consider a static group of features; and
(2) they consider very few features when, in practice, many
relevant features can be derived from network traffic. In the
following two paragraphs, we consider each of these aspects
in turn.

In relation to (1), in the related work that uses clustering
techniques for network intrusion detection – summarized in
Table 1 –, the feature engineering process defines a set of static
features, e.g., the sum of packets sent to port 22-SSH or to port
194-IRC. Then, in every clustering iteration, in runtime, the
predefined set of features is used. The choice of the features
is based on knowledge of the domain, such as knowledge of
TCP/UDP ports commonly associated with security problems
(e.g., port 22-SSH is often brute-forced). However, this feature
pre-selection clearly limits the system’s ability to detect attacks
that are not related to those features (e.g., brute forcing an SSH
server listening on a non-standard port).

In relation to (2), none of the related works uses more than
52 features (see table). Some mention that it is possible to
increase the number of features, but none explores further that
possibility and assesses the impact on performance. Moreover,

Table 1: Comparison of related approaches
Reference #features Definition Algorithms

[28] 52 static X-Means
[60] 9 static PCA, K-Means
[11] 41 static KMeans
[12] 50 static TreeCLUS
[15] 9 static SCC with DBSCAN
[45] 11 static FIRMA
[61] 8 static K-Means
[27] 34 static EM
[13] 25 static TCLUS
[49] 17 static K-Means
[22] 26 static K-Means

this paper up to 412 dynamic K-Means, Agglomerative, DBSCAN
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selecting a broader range of port-based features is problematic
as there are around 1000 system ports (also known as well-
known ports) plus 10000 user ports assigned (also known as
registered ports) [20,32]. In fact, simply increasing the number
of features is far from innocent as it may lead to a phenomenon
called the curse of dimensionality [9, 47, 55, 57]: with many
features, typically more than 1000, clustering no longer works
as expected as relevant features are masked by others and
geometry behaves nonintuitively in high dimensions [5,47,55].
This issue prevents, e.g., having features for all ports, as they
are many more than 1000.

We propose a method to define features in runtime, dynami-
cally, according to data analyzed in each time window. That is,
our approach defines which features should be used in the clus-
tering process, by analyzing the network data corresponding
to a specific period time (e.g., 10 minutes). The idea is novel
and appealing: dynamically defining traffic features based on
network flows (that we will designate netflow after the original
Netflow [18], although there are now several others [19, 56]),
within a specific time period.

We have made an initial experimental analysis in order to
understand which number of features is desirable and if there
are advantages in increasing the number of features (e.g., at
the limit having one feature generated for each port used in a
time period). For this purpose, we studied the theoretical and
experimental complexity of several clustering algorithms in
order to select those that could support the analysis of data
with higher dimensions (i.e., high number of features) and
more volume (characteristic of computer network data). The
algorithms we have chosen later proved to perform well in
terms of detection capability and complexity.

We concluded that, in most situations, defining features in
runtime and for each time-period analyzed provides a signifi-
cant improvement in detection. This approach translates into
an ability to detect unknown attacks, without having to know in
advance which features are associated with that attack. Further-
more, our experiments suggest that by increasing the number
of features, we better characterize the data, i.e., machines with
similar behavior are more precisely grouped (e.g., web servers,
print servers, department X, Y, Z machines). However, in some
cases, it becomes more challenging to obtain outliers using
clustering because the features that contribute to highlight the
outlier lose weight. We can conclude that if we want an outlier
detector based on clustering, the features used shall be related
to the anomalous behavior we want to find. This is handled by
our dynamic feature definition feature.

We present DYNIDS, a network intrusion detection ap-
proach that can dynamically define and extract features from
network data, and uses a clustering ensemble to aggregate
hosts with similar behavior, analyzed in different time win-
dows. Our approach derives features based on port/service
communications during the analyzed time windows. Accord-
ing to insights of attacker techniques from MITRE’s Adver-
sarial Tactics, Techniques & Common Knowledge (ATT&CK)
framework [2,3], we choose to define features based on the top-

used ports and less-used ports. More specifically, in runtime
for each analyzed period, we select not only ports/services that
are more often used (e.g., for detection of top talkers, vulnera-
bility scans or brute-force attacks), but also ports/services that
are less used (e.g., for detection of network recognition or vul-
nerability scans) or used by few machines (e.g., for detection
of command&control communications, Trojans). Regarding
the cluster ensemble, DYNIDS uses three different algorithms
based on different strategies: partition-based (K-Means), hier-
archical (Agglomerative), and density-based (DBSCAN). To
improve the performance of the proposed approach, we made
an ensemble of these algorithms calculating an outlier score
according to the interception results obtained.

We evaluated DYNIDS experimentally with a netflow
dataset publicly available (CIC-IDS-2018 [51]) and real traffic
data obtained at a large military infrastructure. The source code
is freely available for download1 Our approach achieved an
overall F-Score of 0.97 for the public dataset, which is good
performance, and outperformed a related approach from the
literature and alternative approaches. The evaluation with the
real-world dataset detected not only the emulated attacks with
high recall, but also unexpected anomalies that required further
investigation.

2 Background

This section provides an overview of the clustering approach
for intrusion detection, and explains how we have chosen the
algorithms to apply in DYNIDS.

2.1 Clustering approach
The amount of digital data is growing very fast, mostly due to
the Internet of Things. Having so much data creates a great
problem for security systems and analysts since they must
search through a lot more data. Security data processing is
often regarded as a big data problem [62]. Managing such an
amount of data is beyond human capabilities and the usage of
machine learning methods is becoming more useful to extract
information from vast and multi-dimensional data.

Machine learning techniques are commonly divided into
two main categories, although there are others [30]: supervised
and unsupervised learning. Supervised learning requires train-
ing data, typically manually labeled by humans. Supervised
learning has been used in some misuse-based NIDSs to classify
traffic in two classes: malicious or not. As data is labeled by
humans, this approach looks for previously known attacks.

On the other hand, unsupervised learning algorithms do
not require labeled data. Instead they may be used to infer
unknown classes based on data similarity, a problem called
clustering. Typically, unsupervised learning methods used in
the security domain can be considered to be a sub-category of
anomaly-based intrusion detection [10, 36]. However, unlike

1omitted for double blind review
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classical anomaly-based NIDSs, NIDSs based on clustering,
e.g., those in Table 1, do not require clean training data. Clus-
tering algorithms are applied over feature vectors, each vector
representing, e.g., a machine or a user, and cluster the entities
(machines, users) with similar behavior, i.e., with similar fea-
ture values. This is particularly useful when we are trying to
create a system to detect unknown attacks or anomalous behav-
ior. The key idea is that big clusters represent normal behavior
and the outliers (i.e., small clusters of entities or noise) can cor-
respond to anomalous behavior. However, different clustering
algorithms have different initializations and produce different
data partitions [33] according to the shape and structure of data.
One option to overcome the limitations of a single clustering
technique is to combine different clustering techniques.

2.2 Clustering algorithms

The clustering algorithms we considered can be classified as
partition-based, hierarchical, density-based, and based in neural
networks.

K-Means [40] is a landmark in clustering [33, 52] and the
most popular partition-based clustering algorithm. It is known
to produce good results in the context of intrusion detection
[22, 49, 61], as in many other areas [33, 52]. K-Means clusters
are represented by a central vector (cluster mean). Consider
n the number of d-dimensional vectors (to be clustered), k
the number of clusters and i the number of iterations needed
until convergence. To find the global optimum of K-Means is
considered an NP-Hard problem. Hence, the practical approach
is to find a local optimum, which takes linear time O(nkdi).
Hence, in practice, K-Means has linear complexity.

For hierarchical algorithms we use an algorithm that we
designate Agglomerative clustering, although the term is some-
what generic [42]. This class of algorithms is not as far as
popular as K-Means but has been shown to provide good re-
sults with large numbers of data items (our case) and clusters
(not our case) [8, 39]. The algorithm starts with each object
being considered a cluster. Then, it computes pairwise dis-
tances of n data-points and links those together according to a
linkage function (e.g., minimum distance). The results can be
represented by a dendrogram where the root node represents
the whole dataset (single cluster) and each leaf node is a data
object. The complexity of the algorithm is O(n2), mainly due
to the cost of computing all pairs of distances.

Regarding density-based clustering, both Density-Based
Spatial Clustering of Applications with Noise (DBSCAN [24])
and Ordering Points To Identify the Clustering Structure (OP-
TICS [6]) are well-known. We selected DBSCAN for reasons
explained below. DBSCAN has been shown to be efficient [24],
then criticized [26]; currently it is known to be able to perform
well but to be somewhat sensitive to proper configuration [50].
For each point of the dataset, DBSCAN groups together points
with many nearby neighbors and marks as outlier points that
lie alone (i.e., appear in low-density regions). It takes as inputs
the epsilon-neighborhood (the radius) and MinPts (the min-

Table 2: Clustering algorithms complexity
Algorithm Method Complexity Ref.
K-Means Partition O(nkdi) [24]
Agglomerative Hierarchical O(n2) [42]
DBSCAN Density O(n× log(N)) [24]
OPTICS Density O(n2) [6]
SOM Neural high [34]

imum quantity of points within radius) parameters. In short,
DBSCAN generates a new cluster from a data point by absorb-
ing its neighborhood. OPTICS is heavily inspired in DBSCAN
, but does not explicitly segment the data into clusters. Instead,
it produces a visualization of reachability distances and uses
this visualization to cluster the data. OPTICS overcomes the
problem of DBSCAN’s poor performance when clusters have
varying density. DBSCAN and OPTICS have time complexity
of O(n× log(N)) and O(n2) respectively.

The Self-Organizing Map (SOM) is both an artificial neural
network (ANN) architecture and an algorithm [34]. It is an
ANN that is trained in an unsupervised manner, producing a
map, i.e., a discretized representation of the input space. In
other words, SOM creates a low dimensional view of high di-
mensional data, preserving topology. SOM applies competitive
learning as opposed to typical ANNs that use error correction
learning. It has many uses and was much investigated [17, 35].
The algorithm starts with a fully interconnected neural map
(e.g., a 2-dimensional grid of neurons). Each time a new in-
put data x is presented, the neuron with the closest prototype
(weight vector of the same size of input vectors) wins, and
all the weights (winner and neighbors) are updated to become
closer to input data. According to [58] the time complexity of
SOM is high and depends on the layer construction involved
in the algorithm. Roussinov et al. [48] state that SOM does not
scale well to high dimensional or large input data.

In Table 2 we summarize the studied algorithms. For fur-
ther details, Xu et al. [58, 59] provides a survey of clustering
algorithms describing the theoretical time complexity of each
clustering algorithm. They refer that K-Means and DBSCAN
perform well on large-scale data. Our experimental evalua-
tion of clustering algorithms is according to these theoretical
results.

Experimental analysis To decide which algorithms to use,
we tested the most commonly used algorithms in each cate-
gory (partition-based, hierarchical, density-based, and neural
networks). The criteria used to choose the most appropriate
clustering algorithms were:

• Performance with data with a high number of features
(i.e., high dimensional data);

• Ability to identify an attacker in a (labeled) dataset as an
outlier (i.e., isolating the attacker IP as a single cluster).

These initial experiments allowed us to evaluate the per-
formance of several algorithms with high-dimensional data
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and their efficiency in identifying attacks. For the first crite-
ria, we used a benchmark from the hdbscan clustering Python
library [1], adapted in order to test the algorithms in terms
of performance against large datasets. For the second criteria,
we used a private labeled dataset, from a real administrative
network, known to produce good results with K-Means in a
previous work [7]. The labeled dataset contains network traffic
flows from one day. This day contains flows from 4616 entities,
one of which is an attacker that performed a port scan and a
dictionary attack.

Most of the algorithms used were those provided by the
scikit-learn Python library [43]: K-Means, DBSCAN, Agglom-
erative, and OPTICS. To perform tests with SOM, it was nec-
essary to use other libraries: SimpSOM2 and SOMPY3.

Regarding the tests, each algorithm was executed with the
default configuration except SOM. For SOM, the grid-size was
selected based on [53] and tweaked manually to improve per-
formance. The base configuration was M ≈ 5×

√
N, where M

is the number of neurons and N the number of data points (hosts
in our case). The data was generated locally and the number of
data points increased until it reached 30000. With the increase
of data and observing the execution times, it was clear that
SOM does not provide enough performance for large datasets
(it stopped producing results with less than 2000 points).

We tested the remaining algorithms, using the data and fea-
tures from [7], in order to understand the algorithms ability to
detect attacks. From the algorithms evaluated we shortlisted
K-Means, Agglomerative, and DBSCAN, as they performed
much better than the rest. Given these results we decided to
use an ensemble of K-Means, Agglomerative, and DBSCAN
in DYNIDS.

3 DYNIDS Overview

Inspired in previous works, DYNIDS does not rely on knowl-
edge about what is bad behavior, as in signature-based methods,
or what is good behavior, as in typical anomaly detection. As
in previous works, DYNIDS uses clustering to group entities
(e.g., hosts) with similar behavior. That behavior is character-
ized by features extracted from netflow [18]). In DYNIDS the
entities are hosts, identified by an IP address.

As explained in the introduction, there is a set of literature
that follows generically our approach, summarized in Table
1. These works aim to provide general purpose NIDSs, but
they have all the limitation of defining the features related to
ports in advance, i.e., before runtime, and in small numbers.
For example, in [22], a set of 16 predefined port-based features
was used, specifically for ports: 80-HTTP, 194-IRC, 25-SMTP
and 22-SSH. For each port, four features were created: count
of packets sent and received in each port, as the source or
destination host. Notice that used ports are very interesting
features, as they are used in various ways, notably: as endpoint

2https://github.com/fcomitani/SimpSOM
3https://github.com/sevamoo/SOMPY

process identifiers and as application protocol identifiers [20].
Instead of having predefined features, we explore the idea

of having different port-based features according to the traffic
in each analysed time window. Our key ideas that go beyond
related works are: (1) by choosing specific port features we are
limiting the system’s ability to detect attacks related only to
that port; (2) the use of certain ports/services can vary over time
and this information can be extracted from the traffic itself;
(3) often the services or attacks may be running in different
ports than standard or known ones; (4) besides observing and
deriving features from frequently used ports, it should also be
interesting to derive features from less frequently used ports.
As an example, adversaries may conduct command&control
(C2) communications over a non-standard port [4] or may
attempt to get a listing of services running on remote hosts [3].

Hence, our intuition is that we should define which features
to extract dynamically, in runtime, both to consider all relevant
ports and to avoid considering too many ports, which would
lead to the curse of dimensionality. In the case of netflow
events, our insight is that for each time window analyzed there
are at least three types of different port-based features, derived
from: (1) much used ports, or that are used a lot (e.g., brute
force, DoS); (2) uncommon ports, i.e., ports that are used by
few hosts (e.g., can reveal worm propagation, reconnaissance
activities or botnet communication); (3) ports that appear in
very few flows (e.g., detecting probes to non-existent services).
This same idea can be applied to other types of data sources,
such as Windows OS events. In this case, we could use features
derived from eventID (i.e., less frequent eventID in addition to
the most frequent). However, in the paper we focus in network
flows.

Another key challenge that DYNIDS addresses, is that dif-
ferent clustering algorithms produce different partitions of
data [15]; even different initialization or parameters can give
different results for the same algorithm. To avoid the limita-
tions of a single algorithm, we propose combining a set of
clustering algorithms. The partial results of each algorithm
are translated into a scoring scheme that we detail in the next
section.

4 DYNIDS Design

This section presents the details of DYNIDS design and some
implementation aspects. As already mentioned, DYNIDS ex-
tracts features from netflow data to group hosts based on their
traffic characteristics. Hence, the approach is divided into fea-
ture engineering, dynamic feature definition, normalization
& parameter inference and clustering ensemble and outlier
scoring. Each of these aspects will be described next.

4.1 Feature engineering
Each flow is analyzed using as an aggregation key either the
source IP (SrcIP) or the destination IP (DstIP). The idea is
to capture 1-to-1 (e.g., authentication brute-forcing), 1-to-N
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Table 3: The fixed features with source IP as aggregation key
Feature Description
SrcIPContacted # of different IPs contacted by an entity
SrcConnMade # of flows were the entity is the source
SrcPortUsed # of different src ports used by an entity
SrcPortContacted # of different dst ports contacted by an entity
SrcTotLenRcv Sum of total packets length received by an entity
SrcTotLenSent Sum of total packets length sent by an entity

(e.g., probe, worm), and N-to-1 (e.g., DDoS, botnet C2) anoma-
lies. As an example, consider a feature that counts the number
of different ports contacted. This feature would highlight an
attacker executing a port scan as SrcIP (i.e., contacted many
ports). On the other hand, the victim would be highlighted by
other features as DstIP (i.e., received contacts to many ports).

DYNIDS extracts a set of 12 fixed features and a set with a
variable number of dynamically defined port-based features
proportional to the number (x) of selected ports. The first half
of the 12 fixed features, with source IP as the aggregation key,
is shown in Table 3. These fixed features describe general
network activity of an entity (i.e., IP address). The other 6 are
similar but for the destination IPs, thus beginning with Dst.

In addition to the fixed features, DYNIDS dynamically de-
fines 4 features for each selected port. To improve explainabil-
ity, each port-based feature is tagged with a: T (Top) for most
used ports; M (Min) for the least used ports; and U (Uncom-
mon) for ports used by few hosts. For example, consider that
port 80 is the port with the highest packet count (i.e., number
of packets sent to, or received from, port 80) from all flows
for a given time window being analyzed. Hence, port 80 is
a T-top port and would be selected to define 4 features: (1)
T80SrcFrom, # of packets sent from port 80; (2) T80SrcTo, #
of packets sent to port 80; (3) T80DstTo, # of packets received
on port 80; (4) T80DstFrom, # of packets received from port
80. This variable set of features (4 for each selected port) is
obtained with different port selection algorithms that we define
next.

4.2 Dynamic feature definition

DYNIDS extract features from netflow data in multiple time
windows, following [22]. The idea is to analyze the stream of
events in different time windows, at different time scales, so
that we can detect attacks independently of the pace at which
they are executed (e.g., a slow network scan). For example, an
attack may be detected if we analyze traffic at the scale of one
hour, but not at the scale of one day or one minute. Hence, the
approach can be executed on a base time window of duration
B (see Figure 1).

DYNIDS dynamically defines which port-based features
(four to each selected port) to extract in runtime. The algo-
rithm, which we name DYN3_x, serves as the basis for this
dynamic definition of port-based features. This algorithm de-
rives features from the most and least used ports and the ports
used by fewer machines. To compare with other approaches

and show the benefits of the chosen one, we define three vari-
ants:

• TOP_x: features based on the x ports that appear in more
flows;

• DYN2_x: features based on the x/2 ports that appear in
more more flows and the x/2 ports that appear in fewer
flows;

• DYN3_x (the DYNIDS algorithm): features based on the
x/3 ports that appear in more more flows, the x/3 ports
that appear in fewer flows, and the x/3 ports used by fewer
machines.

The idea of having different algorithms is to explore dif-
ferent strategies to generate features in order to understand
the advantages and limitations of each one through the exper-
imental analysis (see Section 5). Also, the variable x, allow
exploring the effects of decreasing/increasing the number of
features. However, in runtime, only one of these algorithms
should be used with a fixed x.

Next, we define the search space for selecting the port-based
features. According to RFC 6335 [20], port numbers are as-
signed in various ways, based on three ranges: System Ports
(0-1023), User Ports (1024-49151), and Dynamic and/or Pri-
vate Ports (49152-65535). The first two groups are available
for service identifier and assignment through IANA, although
many are not currently assigned [32], while the later must not
be used as a service identifier. Having this in mind, we limit
our search space for the most used ports and uncommon ports,
within the range of System and User Ports (0-49151). The
search space for less frequently used ports was limited to Sys-
tem Ports (0-1023) only, the range more prone to probes and
scans. It is worth to refer that we tried other alternatives (e.g.,
using the entire port range for all types of port-based features),
although with less success.

4.3 Normalization and parameter inference
The extracted features for each B time window must be nor-
malized before being given to the clustering algorithms, as
their values can vary significantly (see Figure 2). For ex-
ample, if we chose Euclidean distance as a distance mea-
sure for clustering, normalization can assure that every fea-
ture will contribute proportionally to the final distance. In
order to perform normalization, min-max scaling has to be
used: x′ = (x−min(x))/(max(x)−min(x)), where min(x) and
max(x) represent range values. This method returns feature
values within range [0,1]. The most obvious alternative would
be to use logarithmic scaling, but it would mitigate the differ-
ences between values, making detection harder (we observed
it experimentally).

After normalization, a critical decision is to select the pa-
rameters of the clustering algorithms correctly, e.g., the K for
K-Means, a non-trivial task [44]. Since each time window can
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Figure 1: Flowchart of the dynamic feature definition process

Figure 2: Flowchart of the clustering process

have a different number of entities and features, data can vary
significantly. Thus, fixing the number of clusters (for K-Means
and Agglomerative) or epsilon (for DBSCAN) would not be
a good choice since it could be unfit to that specific data. To
solve this problem, we propose applying the elbow method to
each time window. The idea of this method is to test various
numbers of clusters in order to achieve the optimal number
of clusters, i.e., to choose a number of clusters K such that
adding another cluster does not improve much better the total
within-clusters sum-of-squares (WCSS). In the case of the DB-
SCAN epsilon parameter, the distances between each entity
and its neighbors are calculated and sorted, then a suitable
value for epsilon is where the change is most pronounced [46].
All clustering algorithms can be set to use Euclidean distance.

4.4 Clustering ensemble and outlier scoring

The goal of using clustering is to group machines with similar
behavior. The behavior is defined by the 12 fixed features and
the port-based features, which are defined dynamically from
network traffic in each time window, by inspecting the flows ob-
served in that window. The assumption that is made is that ma-
chines that behave differently from the majority are anomalous.
This anomaly can indicate the machine is suffering or perform-
ing an attack. Hence, we use clustering to detect anomalies
in an unsupervised way. However, besides the possibility of
producing different results, the various clustering algorithms
deal differently with different shapes of data [33]. To avoid
the lack of robustness of a single clustering algorithm, we pro-
pose combining the results of different algorithms (K-Means,
Agglomerative and DBSCAN) based on multiple clustering
strategies (partition, hierarchical and density-based). Several
classification methods can be used and, if needed, manual in-
spection can be performed by a security analyst, starting with
the smallest clusters. However, to automate the identification

of anomalies, we consider an outlier as an entity that is isolated
in a cluster itself. The disadvantage of this approach is that
this method does not work when there are several machines
with the same anomalous behavior (i.e., they are isolated in a
cluster with more than one entity).

Finally, a score is assigned to every outlier. The score can
have 3 weights: (1) very high confidence, when the same outlier
is given by all the three algorithms; (2) high confidence, if the
outlier is given by two algorithms; and (3) low confidence,
when the outlier is given by only one algorithm. The human
analyst may intervene or not according to the priority given to
outliers. Trivially, if no algorithm produces outliers, no action
is required.

5 Experimental Evaluation

To develop and implement DYNIDS for evaluation, we used
Python (v3) [54]. Additionally, we used well-known libraries
such as Pandas [41] for data manipulation, scikit-learn [43]
for data processing and clustering algorithms, and matplotlib
[31] to get heatmaps to aid visualization of features that are
relevant in identifying outliers. All the experiments, were done
in commodity hardware (Intel(R) Xeon(R) CPU E3-1271 v3
@ 3.60GHz with 8GB RAM).

The focus of the experiments is: (1) the analysis of results
when increasing number of features; (2) the comparison of
different approaches for the dynamic feature definition; (3)
the improvements obtained by the cluster ensemble; (4) and
performance evaluation.

Evaluation Metrics We consider an outlier to be a host, iden-
tified by an IP address, isolated in a cluster (one entity cluster).
The expressions in Table 4 can be translated into: (1) Precision
the fraction of outliers that are real (i.e., true positives); (2)
Recall the fraction of outliers that are correctly classified as
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Table 4: Metrics used in the evaluation
Metric Meaning/Formula
True Positives (TP) entities correctly classified as outliers
False Positives (FP) entities wrongly classified as outliers
True Negatives (TN) entities correctly classified as inliers
False Negatives (FN) entities wrongly classified as inliers
Precision (PRE) TP / (TP+FP)
Recall (REC) TP / (TP+FN)
F-Score 2 × PRE × REC / (PRE+REC)

Table 5: Summary of the dataset characteristics
Dataset Size Num. events Num. hosts
CIC-IDS-2018 5,7GB 82,108,448 450 (internal)
Military 160 GB 5,500 (internal)

such by the detector; and (3) F-Score a global detection score.
Another metric, accuracy, is frequently used in this context, but
it is misleading with unbalanced datasets, which are essentially
all realistic cases. Therefore, we avoid using accuracy, and we
privilege F-Score, which summarizes the overall performance.

The results presented in the following sections, consider the
outliers with very high confidence, i.e., those flagged by all
the three clustering algorithms (see Section 4.4). The results
are mentioned to time windows of 10 and 60 min. Moreover,
regarding the CIC-IDS-2018 dataset, although we have made
feature extraction and the clustering process with both internal
(i.e., victims) and external (i.e., attackers) entities as aggrega-
tion keys, we considered for evaluation only the results for the
internal machines.

5.1 Dataset characterization

We used two datasets containing netflow events for the experi-
mental evaluation: a public synthetic dataset provided by the
Canadian Institute for Cybersecurity (CIC-IDS-2018 [51]) and
real traffic flows (private and confidential) obtained at a large
military infrastructure. The information about the datasets is
summarized in Table 5. The public dataset was used for a
comprehensive evaluation that we describe next, while the
real dataset was used to validate the approach in a real-world
scenario.

CIC-IDS-2018 This dataset was developed to provide data
to analyse, test and evaluate NIDSs. To generate such a dataset,
its authors developed a systematic approach in order to produce
a diverse and comprehensive benchmark dataset. In their ap-
proach, they created user profiles with abstract representations
of activity seen on typical networks. The benign behavior of
each machine was generated using CIC-BenignGenerator [51],
which is a tool to generate B-Profiles, i.e., realistic benign
behaviors of a network. The tool uses machine learning and
statistical analysis techniques to generate network events as if
users in a typical network produced them.. The network topol-
ogy represents a typical medium company, with six subnets,
deployed on the AWS computing platform.

Table 6: Summary of the attacks for the CIC-IDS-2018 dataset
Day Attacks (duration) Pattern
Day1 Brute force to FTP & SSH (90min each) 1-to-1
Day2 DoS GoldenEye & Slowloris (40min each) 1-to-1
Day3 Brute Force to FTP & DoS Hulk (60min + 35min) 1-to-1
Day4 DDoS LOIC-HTTP (60min) N-to-1
Day5 DDoS LOIC-UDP & HOIC (30+60min) N-to-1
Day6 Brute force Web/XSS & SQL inj. (60min+40min) 1-to-1
Day7 Brute force Web/XSS & SQL inj. (60min+70min) 1-to-1
Day8 Infiltration & port scan (70+60min) 1-to-1
Day9 Infiltration & port scan (60+90min) 1-to-1

Day10 Botnet (80+90min) 1-to-N

This dataset includes seven different attack scenarios: Brute-
force, Heartbleed, Botnet, DoS, DDoS, Web attacks, and in-
filtration of the network from inside. The ten days of normal
activity and attacks performed are shown in Table 6. In the
table, it is shown which attacks were conducted each day and
what was the duration. In all days (except day 4) the attacks
occurred in two distinct periods (one attack at a time). The
rightmost column indicates the relation between the number of
attackers and victims. The attacks were performed from one or
more machines, using Kali Linux, in a specific network (within
public IPs range) created only to attacker machines. Some
of the tools used were Patator for brute force, Ares botnet,
Selenium and Heartleech for web testing, Hulk, GoldenEye,
Slowloris, Slowhttptest for DoS, and Low Orbit Ion Canon
(LOIC) for DDoS.

Military dataset The dataset of the military infrastructure
was obtained from the Security Information and Event Manage-
ment system (SIEM) [23] in production in that network, which
collects netflow events from internal routers. These flows can
give insights into misbehavior of internal hosts, undetected by
deployed security systems. The dataset corresponds to a full
month, with approximately 5,500 computers and 160 GB of
size.

We emulated 4 attacks in that network to serve as ground
truth when evaluating DYNIDS. The attacks were stealth dic-
tionary attacks (against SSH and RDP) preceded by port scans
(1-to-N and 1-to-1) at a slow pace (1 and 5-second interval).
The main reasons for choosing these attacks were: (1) to have
attacks that go unnoticed by traditional protection systems; (2)
to capture internal reconnaissance activities (e.g., port scans)
and slow dictionary attacks used by attackers with privileged
information.

5.2 Increasing the number of features
In this section, we show the impact of increasing the number of
features. For that purpose, we tested DYN2_x varying x from
10 to 100. Recall that this approach consists in dynamically
defining port-based features by selecting the x/2 ports in more
flows and the x/2 ports in less flows (Section 4). Also, notice
that for each selected port, four different features are derived
from the traffic analyzed in each time window, so we used at
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Figure 3: HeatMap of DYN3_100 (top) and OutGene (bottom) approaches for SSH brute force attack of day1 (CIC-IDS-2018
dataset). Red and blue arrows on the left represent TP and FP, respectively. White surrounded features are equivalent between
heatmaps. The red surrounded features are features corresponding to source ports used by the attacker.

Figure 4: Overall F-Score for different approaches (observing the effect of increasing features) using CIC-IDS-2018 dataset.

most 412 features (12 fixed, 400 for 100 ports).
We also compare with OutGene [22], a recent related work

that only uses fixed features and a single clustering algorithm,
K-Means. We used Python to implemented the feature ex-
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traction and clustering process of OutGene, using the same
libraries we used to implement DYNIDS. We selected Out-
Gene because it is recent and we did not use others as no
implementations were available.

In Figure 4, F-Score, Recall, and Precision results are rep-
resented for all the attacks of the CIC-IDS-2018 dataset, only
for the 10-minute and 60-minute time windows for lack of
space. In the figure, on the left graphic, we can observe that by
increasing the number of features, we get better F-Score val-
ues, e.g., 0.48, 0.56, 0.64, and 0.86 respectively for DYN2_10,
DYN2_20, DYN2_40, and DYN2_100, with B = 60min. The
explanation for this is that with the increase in the number of
features, we have more information to discriminate behaviors,
namely anomalous behaviors. For example, excellent results
are achieved in the detection of brute-force attacks.

To illustrate this example and to help understanding the
meaning of outliers, we show heatmaps with the most relevant
features, i.e., with the features with highest variance between
clusters. Figure 3 shows two heatmaps (both DYN3_100 and
OutGene approaches) for the clustering for day one, when
there was an SSH brute-force attack (see Table 6). Features are
at the bottom (x-axis), clusters on the left (y-axis), the color
represents the value of each feature for each cluster (the lighter,
the higher). The comparison allows us to see how more features
can reduce FPs and give more information about which attack
is being performed. In this case, OutGene produces 1 TP along
with 2 FPs, whereas DYN3_100 only produces the expected
TP.

Something unexpected is that the approaches with less dy-
namic features (DYN2_10 and DYN2_20) performed worse
than OutGene that uses a fixed set of features. What happens
is that DYN2_x not always selected the features necessary
to detect some of the attacks. OutGene on the contrary, was
configured with the necessary features by coincidence.

5.3 Comparison of different approaches

In this section, the different approaches to dynamic feature
extraction are compared (see Section 4). Contrary to what
could be intuitive at first, defining dynamic features solely
based on the most used ports (i.e., TOP_x) is not the approach
that guarantees the best results. This is observable on Figure
5, e.g., on the graph of the left, where TOP_100 has worse
F-Score (0.72) than DYN3_100 (0.8/0.97 for B = 10 and B =
60min.) and DYN2_100 (0.78/0.86 for the same windows)
that use exactly the same number of features (100). The main
reason is that the least used ports are also very important for
detecting the type of attacks. Consider an example of network
reconnaissance to well-known ports (i.e., 0 to 1023), where
features are generated from these connection attempts (i.e., less
used ports with very low traffic volume). A set of port-based
features would be generated, where only the entity that made
the port scan and the victim, having traffic in those ports, have
features with maximum values. However, all the other entities
would have those same features at zero. Thus, we end up having

a sparse matrix, where those features will only be relevant for
attackers/victims related to network recognition. However, for
all IPs that have those features at zero, the Euclidean distance
to all the other entities is not changed, making it irrelevant
to have those features when comparing those entities with
all the others (besides attacker and victim). Another example
is the detection of unauthorized software, easily unveiled by
features based on ports used by a few machines, regardless of
traffic volume. However, it is not trivial to see that this type
of feature allows the detection of attacks, such as brute force,
that generate many requests sequentially with several different
source ports (e.g., see features surrounded in red in Figure 3).

It should also be noted that with the increased size of the
analyzed time window, the TOP_x approach performs worse.
That is, in a larger time window, there is a broader set of used
ports and the probability of the TOP_x approach select ports
relative to the attack decreases. On the other hand, this factor
is beneficial for the other two approaches because the less used
ports end up being more easily highlighted. This can be seen in
Figure 5 by observing the F-Score values for each time window
in the different approaches, as previously mentioned. Notice
that OutGene performed worse than all the approaches that use
dynamic port-based features.

In summary, both DYN2_x and DYN3_x (DYNIDS) achieve
the best results, the latter being the best because that it aggre-
gates three different types of port-based features, thus obtaining
a better characterization of the data according to the factors
mentioned above. DYN3_x can detect all the dataset attacks,
except for the attack on day 10, when there are 10 victims
infected with a botnet (Zeus and Ares). The non-detection is
due to the classification method used – an outlier is an entity
isolated in a cluster– does not allow detecting groups of vic-
tims with the same behaviors (10 in this case). This should
be addressed by an analyst, doing manual inspection of small
clusters. For this reason, this attack was not taken in account
for the evaluation metrics.

5.4 Performance of cluster ensemble

The evaluation of the cluster ensemble is presented in Fig-
ure 6. As can be observed, the K-Means and Agglomerative
algorithms have similar performances (F-Score on the left),
whereas DBSCAN has the highest Recall (i.e., is the most
sensitive) at the cost of generating the highest number of false
positives (thus, the lowest Precision). The ensemble signifi-
cantly improves the individual results of each algorithm, in
particular those of DBSCAN. Notice also that Precision is
what improves the most with the use of the ensemble, highly
reducing the FPs.

Figure 7 shows the execution times of the clustering algo-
rithms. As expected, the time increases with the number of
entities to analyze (i.e., data points). On the other hand, the
size of the analyzed time window does not have any significant
influence on the execution times of the clustering algorithms,
since the number of entities remains approximately the same.
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Figure 5: Comparison of the overall performance of best approaches and OutGene.

Figure 6: Comparison of the overall performance of the different clustering algorithms and Cluster Ensemble.

Figure 7: Clustering algorithms execution times for DYN3_100 approach and different time windows. Left: Aggregation Key is
internal computers. Right: Aggregation key is external computers. Under the figure are the average parameter values.

Figure 8: Feature Extraction execution time, for DYN3_100
approach and for different time windows

However, when increasing the time window, the more port-
based features may appear, because the probability of having
bidirectional traffic also increases (e.g., in a small time window,
some selected ports can refer to a request without having re-
sponse yet). Overall, the cluster ensemble complexity is O(n2)
due to the use of Agglomerative clustering algorithm.

To calculate the total time for the whole process, we need
to sum the time needed for extracting the features from flow
data, to the time needed for the clustering process. Figure 8
represents the average runtime of the feature extraction process
before data is given to the clustering algorithms. The feature
extraction process has a much higher computational cost than
the clustering algorithms themselves. This cost is linearly pro-
portional to the size of the input data, which corresponds to
the size of the network, time window analyzed (i.e., the larger
the window, the more data to process) and with the volume of
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traffic and connections that occur in that period.
The execution time of the overall process for each time

window was always inferior to the time window size itself.
Considering the commodity hardware that was used, we can
say that the complexity allows a practical implementation in
real-world scenarios.

5.5 Evaluation with a real-world dataset
We made a less detailed evaluation using the DYN3_x ap-
proach and the military dataset, with the objective of showing
that DYNIDS works with real-world data. DYNIDS was able
to reliably isolate both the attackers and the victims (in both
cases internal hosts), leading to no FPs. The port scan, even at
a very slow pace, generates port-based features based on the
least used ports. This allowed the detection of the attack. Table
7 summarizes the results for both days when the emulated
attacks occurred. The first day includes a 1-to-1 slow port scan
(5sec. pace) plus an SSH dict-attack (2min. pace). The second
day includes a 1–to-N slow port scan (1sec. pace) plus a RDP
dictionary attack (30sec. pace).

Table 7: Summary of results with military network dataset
Day F-Score Best window Comments
day1 1 10min no FP among 2332 entities
day2 1 10min no FP among 2112 entities

We also processed the days of the dataset with regular traffic
(i.e., when we were not injecting attacks) and unexpectedly
found some anomalies indicating misconfigured devices, that
we reported to the security operations team, which in turn
provided excellent feedback on DYNIDS.

In summary, in our evaluation of the DYNIDS with data
from the real network, just like in the evaluation with the public
dataset, very rarely an alert raised by DYNIDS did not corre-
spond to a real threat or a real anomaly. All in all, DYNIDS
proved to be especially good unveiling network reconnaissance
activities.

6 Related Work

There are several surveys on ML (or data mining) for cyber-
security and intrusion detection [10, 14, 29, 62]. A seminal
paper by Lee and Stolfo used ML for intrusion detection [37].
However, they use algorithms to mine association rules and
frequent episodes, not clustering. There are many works on
ML for intrusion detection, but we focus on those related to
clustering.

An earlier study using clustering for network intrusion de-
tection is due to Leung and Leckie [38]. They present their
own clustering algorithm, fpMAFIA, and test it with the old
1999 KDD Cup dataset. The number of features used is un-
clear. BotMiner is focused on botnet detection without a priori
knowledge, using clustering [28]. It uses a hierarchical 2-layer
clustering scheme based on differentiating the C2 plane from

the activity traffic plane. Yen et al. also detects botnets by
clustering network traffic from Netflow and by considering
that small clusters (hosts different from the majority) mali-
cious [60]. NADO uses K-Means and the 1999 KDD Cup
dataset [11]. It obtains a reference point from each cluster,
builds a profile for each cluster, calculates a score for each
data item, and raises an alert if it exceeds a threshold. As men-
tioned, we aim to avoid thresholds, as adversaries may setup
attacks to avoid breaking them. The same authors presented
another approach based on a tree-based subspace clustering
technique, i.e., an hierarchical clustering technique [12]. The
authors introduce a novel technique to label clusters (CLUS-
Lab) that allows generating labelled datasets. UNIDS does
outlier detection by combining two techniques: sub-space clus-
tering and multiple evidence accumulation [15]. Beehive is fo-
cused on intrusion detection in big data and its challenges [61].
They use clustering to identify outliers but the data is taken
from logs, not network flows. Gonçalves et al. follow the same
line [27]. Bhuyan et al. proposed an entropy-based feature
selection approach to select a relevant non-redundant subset of
features [13]. Moreover, they use a tree-based clustering tech-
nique to generate a set of reference points and an outlier score
function to rank incoming network traffic to identify anomalies.
Sacramento et al. consider flows and propose semi-automatic
cluster labeling and feature extraction using the MapReduce
framework to handle big data [49]. OutGene clusters Netflow
data and introduces the notion of genetic-zoom to explain out-
liers through a genetic algorithm and time-stretching to capture
attacks independently of their pace [22].

As previously explained, we advance previous work by con-
sidering dynamic features, defined after each time period taking
into account the traffic observed in that period. No previous
work provides mechanisms equivalent to dynamic definition
and extraction of features from network data.

7 Conclusion

We present DYNIDS, an approach for network intrusion de-
tection, based on unsupervised learning, that detects undefined
attacks without signatures and without clean training data. Our
approach is not focused on real-time intrusion detection, but
on longer-term malicious activity detection, such as APTs. The
approach is based on clustering, i.e., on aggregating hosts with
similar traffic patterns, in order to detect outliers. We argue
that for that purpose we need to consider a large set of features,
not disregarding large numbers of network ports (arguably
thousands) that may be relevant for detecting certain malicious
activities. The issue is how to avoid the curse of dimensionality.
With that goal in mind, DYNIDS can dynamically define and
extract features from network data, analyzed in different time
windows, reducing the number of features to a manageable
number. With the assumption that attackers behave differently
from the majority, DYNIDS can achieve good results both with
an evaluation dataset and in real-world scenarios.
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