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Abstract—

I. INTRODUCTION

As often in history, prophecies eventually become reality;
over the past three decades, data-oriented attacks [1] evolved
from theoretical assumptions [2] to serious threats [3]-[8].
Therefore, the everlasting race between attackers and defend-
ers continues. In the past, we have witnessed effective security
mechanisms that have urged attackers to investigate new
directions and exploit insufficiently explored corners of the
system. Similarly, recent advances in Control-Flow Integrity
(CFI) [9]-[13], Code-Pointer Integrity (CPI) [14], [15], and
code diversification [16]-[18] significantly raised the bar for
code-reuse attacks. In fact, CFI mechanisms were adopted by
Microsoft [19], Google [20], and LLVM [21] forcing attackers
to explore the uncharted world of data-oriented intrusions.

Generally, code-reuse attacks chain short code-sequences,
gadgets, to hijack the application’s control-flow. It is sufficient
to overwrite one control-flow structure, such as a function
pointer or a return address on the stack, with the start of the
crafted gadget chain, to cause a target application to perform
arbitrary computation. In contrast, data-oriented attacks com-
pletely avoid changes to the control-flow. Instead, this class
of attacks aims at modifying non-control data to cause the
application to obey the attacker’s intentions [6]-[8]. Typically,
an attacker leverages memory corruption vulnerabilities that
enable arbitrary read or write primitives to take control over
the application’s data. By stitching a chain of data-oriented
gadgets that operate on the modified data allows the attacker
either to disclose sensitive information or to escalate privi-
leges without violating the application’s control-flow. In this
way, data-oriented attacks remain under the radar despite the
presence of code-reuse mitigation techniques and can lead to
disastrous consequences [4]. We anticipate further growth in
this direction in the near future and emphasize the need for
practical primitives that eliminate such threats beforehand.

Researchers suggested different strategies to counter data-
oriented attacks. For instance, Data-Flow Integrity (DFI) [22]
mechanisms dynamically track the binary’s data-flow. On
the other hand, by introducing memory-safety to the C/C++
programming language it becomes possible to completely

d,eliminate memory corruption vulnerabilities [23], [24]. While

both directions have the potential to thwart data-oriented at-
tacks, they lack practicality due to high performance overhead
or suffer from compatibility issues with legacy code. Instead
of enforcing the integrity of the data-flow, researchers started
to explore isolation techniques that govern access to sensitive

code and data regions [25]-[27]. Yet, they are either limited to
user space, focus on protecting only one specific data structure,
or rely on policies managed by the hypervisor.

In this paper, we explore the potential of modern vir-
tualization extensions of the Intel architecture to establish
selective memory protection primitives that have the capability
of thwarting data-oriented attacks. Instead of equipping the
hypervisor with semantic knowledge required to enforce mem-
ory isolation, we take advantage of the Extended Page Table
(EPT) pointer (EPTP) switching capability on Intel to manage
different views on the guest’s physical memory from inside
Virtual Machines (VMs), without any hypervisor interaction.
For this, we extend Xen altp2m [28], [29] and the Linux
memory management system to establish primitives that can be
applied to selected, sensitive data structures in user and kernel
space. In other words, we encapsulate sensitive data in disjoint
protection domains that are not subject to limited access
permissions of the x86 memory management unit; ! a strong
attacker with arbitrary read and write primitives to memory,
cannot access the fortified data without first having to enter the
corresponding protection domain. Further, we equip pointers to
sensitive data in protection domains with authentication codes,
whose integrity is bound to a specific context. This way, we
protect pointers from illegal modifications and hence obstruct
data-oriented attacks targeting the fortified data.

We apply our primitives to two sensitive kernel data struc-
tures that are vital for the system security, yet often disregarded
by defense mechanisms: page tables and process credentials.
Besides, we demonstrate their ease of applicability by guarding
sensitive data in common, security-critical user space libraries
and applications. For all cases, we evaluate the performance
and security of our primitives. We believe that our work
introduces a powerful means that brings us closer towards
winning the fight against data-oriented attacks.

In summary, we make the following main contributions:

o We use Intel’s EPTP Switching and Xen altp2m to con-
trol different guest physical memory views to encapsulate
sensitive data in disjoint protection domains.

o We extend the Linux kernel to introduce in-guest memory
protection primitives to fortify arbitrary data structures
against data-oriented attacks in user and kernel space.

o We apply our primitives to guard page tables and process
credentials on Linux, as well as chosen sensitive user
space components with minimal performance overhead.

'In this paper, we refer to both x86 and x86-64 as the x86 architecture.
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