Towards Formal Methods of IoT Application Layer
Protocols

1% Katharina Hofer-Schmitz
DIGITAL
JOANNEUM RESEARCH Forschungsgesellschaft mbH
Steyrergasse 17, Graz, Austria
katharina.hofer-schmitz @joanneum.at

Abstract—This paper provides an overview of the application
of formal methods for two most commonly used application layer
protocols in IoT domain, MQTT and CoAP. Formal methods give
the possibility to improve security and are even able to provide
security guarantees with respect to a given model. Our research
shows, that we can distinguish three formal verification fields for
the two protocols, namely qualitative and quantitative analysis,
implementations and security properties. A formal verification
review of selected protocols is provided in accordance with
these fields, used tools and considered properties. Based on that
research, a short summary and open challenges are given.

Index Terms—MQTT, CoAP, Formal Verification, Model
Checkers, Security, IoT

I. INTRODUCTION

This paper deals with protocols in IoT application layer
for machine-to-machine (M2M) communication (see [1] for
an overview of these protocols). According to [2] the most
popular protocols for machine-to-machine (M2M) technology
are Message Queuing Telemetry Transport (MQTT) and Con-
strained Application Protocol (CoAP). M2M technology based
on these two protocols can be found in a lot of sectors includ-
ing manufacturing, public administration, defence, building
automation, transport and healthcare. Due to the flexibility of
these two protocols, they are adopted in a wide variety of
settings. However, there are several vulnerabilities and issues
regarding design and implementations along with thousands of
non-secure deployments found in a security analysis by [2].
Such a large number of security issues might originate from
the optional security. Furthermore, most of the tutorials in the
internet providing examples on the use of these protocols do
not have security enabled. That entails the risk that the code
in question is not just intended for test cases only, but also
in the production system. Moreover, changing standards and
the popular agile integration in IoT are quite challenging for
developers and might run the risk of using different version
of the protocols.

In general security requirements are taken into account by
performing risk analysis, applying attack trees, creating threat
models and performing penetration tests. Since systems are

This work was funded in part by Federal Ministry Republic of Austria
Transport, Innovation and Technology and in part by European Union’s
Horizon 2020 research and innovation programme under grant agreement No
830892, project SPARTA

2" Branka Stojanovié
DIGITAL
JOANNEUM RESEARCH Forschungsgesellschaft mbH
Steyrergasse 17, Graz, Austria
branka.stojanovic @joanneum.at

getting more and more complex in both functionality and
connectivity, challenges for security experts have increased.
Due to limited resources in capacity and storage in IoT
devices, detecting open security issues with complex secu-
rity mechanisms at runtime is not an option. A promising
technique to detect weaknesses and possible vulnerabilities
and ascertain the correctness of a design by using a diverse
set of mathematical and logical methods is that of formal
methods (see e.g. [3]). Thereupon, the functional correctness
of implementations, programming bugs and the fulfilment of
security properties can be proven or falsified. In case of
a successful proof, security guarantees with respect to the
verified model can be made.

The main goal of this paper is to give a review on ap-
proaches applying formal methods to IoT application layer
protocols with a focus on MQTT and CoAP. Section II
provides some basic information for both protocols. Section III
considers security in application layer in general and ad-
ditionally security issues for the two selected protocols. In
section IV, a short introduction to formal verification is given.
Moreover, an overview of publications using formal methods
for MQTT and CoAP is given. Details, especially regarding
tools and considered properties are provided.

II. PROTOCOL’S OVERVIEW

In general, protocols (see [4]) can be seen as a set of rules
transmitting information in a predefined format allowing the
communication between two or more entities (e.g. physical
media, different layers). These rules, their syntax and its
semantics define the protocol, which can be implemented by
hardware, software or a combination of both. Protocols are
usually defined in technical standards. There are several refer-
ence models for protocol standardization, providing a standard
architecture to define network communication with several lay-
ers. One of the most popular models is the TCP/IP model [5],
[6]. However, relevant literature proposes a reference model
that fits better to the IoT domain (see e.g. [7]). It consists of
three layers, the application layer, the network layer and the
perception layer, see Fig. 1. The perception layer is responsible
for identifying objects and gathering information, the network
layer for transmitting and processing information from the
perception layer and the application layer is responsible for

TCP/IP Model loT Model

Application layer Application Layer

Transport layer
Network Layer
Internet ayer

Network Access layer Perception Layer

Fig. 1. TCP/IP model and IoT reference model

the representation of data. Moreover, it provides an interface
for the user, giving them the possibility to monitor and control
variables by sending commands over the network (see e.g. [8],
[9D.

Next, a short introduction to the selected application layer
protocols is given. For further application layer protocols see
e.g. [1].

A. MQTT

MQ Telemetry Transport (MQTT), a protocol for machine
to machine communication, was invented in 1999. It is a pub-
lish/subscribe, very simple and lightweight messaging protocol
providing one-to-many message distribution and decoupling of
applications. It is designed for constrained devices and low-
bandwidth, high-latency or unreliable networks. Furthermore,
it ensures reliability and assurance of delivery. Therefor, it can
be perfectly applied for M2M or in the Internet of Things,
where bandwidth and battery power are usually limited.

MQTT v5.0 and v3.1.1 are OASIS standards, the v3.1.1 has
also been ratified by ISO. An older name for that protocol is
the SCADA protocol. In order to keep the protocol simple and
lightweight, there is no built-in security. However, user name
and password can be passed with an MQTT packet in v3.1. For
encryption across the network, SSL can be used, independently
of MQTT protocol. Additional security can be added by an
application encrypting data that it sends and receives.

The protocol runs over TCP/IP or other protocols which
provide ordered, lossless, bi-directional connections. There are
three Quality of Service (QoS) for message delivery. QoS 0,
called “at most once”, messages are delivered according to
the best efforts of the operating environment. Therein message
loss can occur. QoS 1, named “at least once”. There, messages
arrive, but duplication can occur. In QoS 2, “exactly once”, it
is guaranteed, that messages arrive exactly once, see [10].

B. CoAP

The Constrained Application Protocol (CoAP) is a server-
client protocol developed by the Internet Engineering Task
Force. It is a specialized web transfer protocol for usage with
constrained nodes and constrained networks (e.g. low-power,
lossy). CoAP is designed for M2M applications, especially
such as smart energy and building automation. Moreover, it

fulfils requirements as multicast support, very low overhead
and simplicity for constrained environments.

The protocol provides a request/response interaction model
between application endpoints. Furthermore it supports built-in
discovery of services and resources. It also includes URIS and
Internet media types. There are four security modes in CoAP
named NoSec, PreSharedKey, RawPublishKey and Certificate.
While in the first mode the system is secured just by keeping
attackers from being able to send or receive data packets
from network with CoAP nodes, in the other three modes
Datagram TLS (DTLS) is used to secure CoAP. CoAP itself
does not provide protocol security primitives for authentication
or authorization, see [11].

III. SECURITY IN IOT APPLICATION LAYER

In order to ensure security, critical properties of informa-
tion need to be protected in an information system. These
properties are usually described by the C.I.A. triangle. Con-
fidentiality means that just authorized users have rights and
privileges to access information. Integrity ensures, that changes
of information don’t happen unnoticed. Availability states that
information is accessible in a required format without inter-
ference or obstruction. Additionally there are the properties:
Accuracy, ensuring that there are no mistakes or errors and
Authenticity, stating that information is in the same state, when
it was created, placed, stored or transferred (see [12]).

A. Attacks on application layer

Attacks harm one or more of these critical properties. For
communication protocols, generally speaking, the most impor-
tant security properties are confidentiality and authenticity.

In [9] a classification of attacks based on the IoT layers is
given. Attacks on application layers in general affect the end
user, e.g. by passing a non-intended information or by denial
of service. According to [9] attacks targeting application layers
include phishing attacks, malware (e.g. worms, viruses, Spy-
wares and trojans), software vulnerabilities, sniffing attacks,
keylogger attacks. Moreover, possible harm can also be done
by Denial of Service (on user or web service) and encryption
attacks containing side channel attacks and cryptoanalysis
attacks.

B. Security issues in MQTT and CoAP

In [2] the following threats in MQTT and CoAP are

reported:

o Target reconnaissance: Numerous insecure deployments
of endpoints all over the world have been found, leaking
sensitive data such as technical details, names, phone
numbers, credentials and network configuration details.

e Industrial espionage: They were able to find produc-
tion data of critical industry sectors (e.g. manufactur-
ing, healthcare, building automation) by using simple
keyword-based searches leading e.g. to location and iden-
tifying information of assets and personnel. Moreover, the
technology used by a given company and the business-to-
business relations, including exchanged communication,
were also compromised.

e Lateral movement: By abusing a specific functionality
of the M2M technology maintaining persistent access
to a target via software upgrades or performing lateral
movement is possible.

The authors in [2] claim, that the current security status of
M2M technology facilitates an attacker with the above threats
in mind due to design-related and technical issues with that
technology and due to a low security awareness. These results
even show a great basis for formidable Advanced Persistent
Threats (APTSs).

Beside [2], also [13] and [14] consider possible security
issues for MQTT and CoAP. Summarizing these results for
MQTT shows, that there are some corner cases providing
opportunities for misunderstandings and consequent vulnera-
bilities, which might be introduced in implementations. More-
over, although MQTT version 5.0 improves security, there is
the drawback that it is not entirely compatible with previous
versions, which might introduce security issues and most
likely, could delay its future adoption. For CoAP, there is a
security risk consideration already highlighted in protocol’s
specification in [11]. However, possible security issues might
arise due to the missing handshake phase. Reported attacks
include amplification attacks, where an attacker can use the
end device to convert small packages into larger packets,
the parsing attack, where a remote node can be crashed by
executing an arbitrary code on the node, caching attacks, where
proxys with the ability to cache can gain control. The latter
especially poses a threat for clients exchanging data with the
Proxy.

Most of the afore mentioned risks cannot be prevented
by following general advice and using recommended security
measures (e.g. data access only for authorized users, encryp-
tion of data, regular audits). However, some of them could
be detected at an early stage at design stage by using formal
methods - helping to avoid unclear specifications and provide
security checks for implementations of these protocols in order
to further avoid a widespread usage of vulnerable applications.

IV. APPLICATION OF FORMAL METHODS ON 10T
APPLICATION LAYER PROTOCOLS

Formal methods are a useful tool for providing quantitative
statements about safety and security properties of digital
systems (see e.g. [3]). These methods can be used to formally
verify a model. Therefore, two kind of tools are distinguished:
model checkers and theorem provers. While the first type
exhaustively and automatically verifies a given system’s model
in it’s model space, the second one often requires human
expertise for proof guidance by providing design and spec-
ification characteristics as theorems or algebraic constraints.

One of the most popular and often cited examples empha-
sising the importance of such verification is the Needham-
Schroeder public key protocol [15], which appeared 17 years
before a possible attack — the Lowe’s attack [16] (allow an
attacker to impersonate another agent) — was detected by
applying the Failures Divergence Refinement Checker (FDR)
[17]. According to [18], two things should be noted: the attack

is nonintuitive and violates a security assumption (agents do
not reveal secrets) Needham and Schroeder explicitly made
in their paper. However, losing this assumption has very sur-
prising consequences. Furthermore, it has to be stated that the
attack does not depend on any flaws present in cryptographic
primitives. It just requires a simple adversary model, where the
adversary only uses operations such as concatenation, splitting
of messages and encryption/decryption.

Besides detecting vulnerabilities in a protocol through its
design presented in [16], other applications fields for formal
verification include checking the implementations of a pro-
tocol. There, an implementation is verified with respect to its
formal specification. In that case especially programming bugs
and programming vulnerabilities (e.g. buffer overflows, arith-
metic overflow and underflow, format-string vulnerabilities)
come into play and should be checked in detail. Furthermore,
the functionality of a protocol or implementation can be
considered, since this can also lead to possible attacks. An
example is an intended operation such as a strong authentica-
tion method, which is absent (see e.g. [3]).

In the following subsections, an overview about formal
method approaches on MQTT and CoAP are given. This
paper tends to provide a review on most important methods
and obtained results in this field, and literature was selected
in accordance with that. Based on literature, three different
application fields can be distinguished: Formal methods for
qualitative and quantitative analysis (see subsection IV-A),
implementations (see subsection IV-B) and verification of
security properties (see subsection IV-C).

A. Qualitative and quantitative analysis

Aziz presents in his work in [19], [20] a formal model of the
MQTT protocol version, including a formulation of a specifi-
cation of the MQTT protocol and an analysis of its semantics.
The formal model is based on a process algebra called TP 1
and originally inspired by [21] and further developed by [22].
TPi is a synchronous message-passing calculus capable of
expressing timed inputs. The author uses TPi to approximate
the behaviour of processes by performing an abstract static
analysis, i.e. the number of copies of input variables and
new names, which can be captured in the analysis during
communication. There, different quality of service scenarios
are considered, where the focus is on the initial published
message from the server to the subscribers. The analysis is
then applied manually to the protocol for these scenarios. The
result shows, that the first two QoS modes of operation in the
protocol are clearly specified. Nevertheless, the last case of
QoS 2 delivery semantics has potential vulnerabilities. This
is due to the fact, that a simple attacker model can cause
undetermined semantics. [20] considers the updated MQTT
standard in version 3.1.1, whereas [19] considers version 3.1.

Rodriguez et al. in [23] provide a formal Colored
Petri Net model for MQTT version 3.1.1. Colored Petri
Nets (CPN) is a graphical language for modelling and val-
idating concurrent and distributed systems [24]. The goal
of the authors in [23] is to simulate and perform a state-

space exploration to verify an extensive list of behavioural
properties and thereby validate the correctness of the model.
The authors state, that they encountered several parts that are
vaguely defined, which could lead developers to different im-
plementations, e.g. a gap in the specification with the lossless
property wherein the protocol MQTT protocol is described
to run over TCP/IP (or another transport protocol providing
ordered, lossless and bidirectional connections). Furthermore,
the authors detected several issues in the specification of QoS
levels 1 and 2.

Houimli et al. in [25] focus on the formal modelling of
MQTT 3.1.1. As a first step a semi-formal model performed
by UML diagrams is proposed. As a second step, formal
modelling by using Probabilistic Timed Automata, a modelling
formalism for systems with real-time and non-determinism as
the main characteristics governing their behaviour, is done.
As tool for formal modelling and later on, verification, the
authors use UPPAAL. UPPAAL (see e.g. [26]) is a toolbox
for verification of real-time systems and is especially useful
for systems that can be modelled as a collection of non-
deterministic processes with finite control structures and real-
valued clocks, communicating through channels or shared
values. It consists of three main parts, a description language
for modelling, a simulator for validation and a model checker
based on the theory of timed automata. For the latter, the SMC
model checker of UPPAAL is used to perform a qualitative
and quantitative analysis of the MQTT. The authors check
several essential properties such as reachability, safety and
vivacity. Moreover, some important metrics are analysed such
as the number of active and inactive nodes, the success rate
of transfer as well as the reception of message.

Hcine and Hafaiedh in [27] provide a model for MQTT by
using the formalism of timed automata to describe different
quality of service levels. For the overall architecture, they
considered three parts, namely Broker, Publisher and Sub-
scriber. Their purpose of the verification is to check whether
the functionalities for MQTT can be accomplished through
the proposed model. By using the UPPAAL model checker
the authors proved several properties: Deadlock-Freedom, In-
variance, and Store Property. The last one shows, that it is
important for the QoS levels 1 and 2, that the publisher stores
the topic before delivering it to the broker. Moreover, for QoS
level 1 and 2 the following properties are checked:

« Each topic is received once by the broker.

« Each topic is received once by the subscriber.

o A subscriber gets the topics only if they were subscribed
to the topics.

While the first two properties are not fulfilled in QoS level
1, all the other properties are satisfied. Since in QoS level
1 the delivery of one topic more than once can appear,
the functionality of MQTT can be verified. Furthermore, the
authors conduct several simulations by using the UPPAAL
simulator. They considered for each QoS level several aspects
in different possible configurations such as: the percentage of
messages sent by the publishers, messages received by the

subscribers and lost messages.

Diwan and D’Souza propose in [28] a unified approach
to verify communication protocols through a framework in
Event-B. Event-B is a formal method for system modelling
and analysis, see [29]. Its key features are the use of set theory
of modelling notation, the use of refinement to represent sys-
tems at different levels and the usage of mathematical proof for
verifying consistency between refinement levels. The authors
of [28] created an abstract model of a protocol consisting
of commonalities among various application layer protocols
like communication modes, connection establishment proce-
dures, message layers, time tracking and attacker modules.
The abstract model is then fit in the individual protocols,
namely MQTT, MQTT-SN and CoAP by using refinement and
decomposition techniques of Event-B. Simulation has been
done using Rodin [30], a suite of tools aiding in the design and
analysis of Event-B models. There they have formally verified
properties related to QoS, persistent session, will, retrain
messages, resource discovery, two layered request-response
architecture, caching, proxying and message deduplication.
Their simulation shows, that the protocols work as intended
in an uninterrupted network as well as in the presence of an
intruder, which consumes messages in the network. Moreover,
the protocols are also able to reduce overhead by providing
features like persistent connections, retain messages, caching
and proxying. These features are essential for IoT systems.

Vattakunnel et al. in [31] propose a verification model
for application layer protocols considering its interaction with
routing layer illustrated for CoAP. As a tool, the SPIN model
checker [32], which targets the efficient verification of multi-
threaded software, is used. With SPIN, the logical consistency
of a specification can be checked. Moreover, that tool reports
on deadlocks, race conditions, different types of incomplete-
ness and unwarranted assumptions about the relative speed
of processes. As input language, the tool supports the high
level language PROMELA for specifying system descriptions,
which is also used by the authors in [31] for building their
model. The model is used to consider reliable message ex-
changes among various entities, i.e. its interaction with the
routing layer for constrained devices communicating through
multiple hops. In order to analyze the external behavior of
the model, a message sequence chart depicting the message
flow between nodes is generated. Subsequently, the model is
verified by using the SPIN model checker covering safety,
liveness and correctness properties. Moreover, they analysed
the verification results in terms of memory usage, number of
state transitions and maximum search depth.

B. Implementations

Mladenov in [33] used formal verification to check if
MQTT implementations adhere to the standard by using the
Test and Test Control Notation version 3
(TTCN-3). That tool enables the description of the behaviour
of a given implementation. Moreover, it can be verified if
the System Under Test adheres to the given definitions. For
testing three different open source implementations, namely

MOSQUITTO version 1.4.0, Emqttd version 2.2 — rc.1,
Rabbit MQ version 3.6.10 are chosen. They tested 13
normative statements, that were selected to cover many
different aspects of the MQTT message exchange defined
in sections 2 and 3 of the standard. It was expected for the
implementations to pass the test, however, for the normative
requirement 2.3.1 — 1 all three of them fail. That requirement
states, that the Packet ID should be greater than zero in the
case of an exchange of certain types of messages with QoS
lever greater than 0. Moreover, for several other normative
requirements two of their implementations fail for the same
requirement.

Hernandes et al. in [34] propose a framework based
on fuzzing technique to test and verify the security
of applications implementing MQTT. The fuzzing technique
is a testing approach in order to detect vulnerabilities in
software applications by sending unexpected input data to
target systems and then monitor the results. By using their
fuzzer - only suited for MQTT and no other protocols - they
found several unknown vulnerabilities (like Denial of Service,
Communication resets of Brokers) in widely used applica-
tions implementing the MQTT protocol, like MOQUETTE or
MOSQUITTO.

Tromp in [35] considers formal methods to successfully
identify faulty behaviour in (implemented) communication
protocols by using online automata learning. This
technique helps to infer formal models of protocol imple-
mentations by inferring an automaton. Therefore, they used
RALibisan, an extension of LearnLib, a modular framework
for online automata learning. They considered three open
source libraries of CoAP, namely Californium, CoAPthon
and #xThings. The test of these implementations lead to 11
specification violations. Furthermore, the authors states that
only parts of the protocol have been studied, therefor the
approach might not find every fault in the implementations.

C. Security properties

Kim et al. in [36] formally analyse MQTT and CoAP by ap-
plying the Tamarin tool (see e.g. [37], [38]). This tool is
developed for the symbolic modeling and analysis of security
protocols, where the protocol specification is based on multiset
rewriting rules. It can handle protocols with non-monotonic
global state and complex control flows such as loops. The
authors used the Tamarin prover under the traditional Dolev-
Yao (D-Y) [39], the extended Canetti-Krawczyk model (eCK)
[40] and also considered Perfect Forward Secrecy (PFS)
[41]. The D-Y model considers an insecure wireless channel,
where all messages can be intercepted by an adversary, but
cryptographic operators do not leak information, e.g. the only
way for the adversary to decrpyt an encrypted message is to
get the encryption key. In the eCK model the adversary may
compromise a limited number of long-term and session keys
with the possibility of corrupting random number generators.
PFS protects past sessions against future compromises of
secret keys. For MQTT the authors in [36] applied Tamarin
with respect to two attacker models, the Dolev-Yao and the

Event-B TPi SPIN
UPPAAL CPN Event-B
fuzzing Tamarin automata Tamarin
TTCN-3

Fig. 2. Formal methods used for MQTT (left) and CoAP (right) with respect
to application fields (top: Qualitiative and quantitative analysis, bottom right:
Security properties, bottom left: Implementations.

TABLE I
FORMAL METHODS FOR EACH PROTOCOL AND FIELD
[Protocol [MQTT [CoAP |
Functional checks [19], [201, [23], [25], [27], [28] [28], [31]
Implementations [33], [34] [35]
Security properties [36] [36]

extended Canetti-Krawczyk. For both attacker models, they
successfully verified authentication, key establishment and
message secrecy. In case of CoAP two different standard
version security primitives such as Public Key Cryptography
and Pre-Shared Key are taken into account. They authors
consider the same properties for MQTT and managed to find
an attack on message secrecy for CoAP using a Pre-Shared
Key and an attack on key establishment in the case of using
Public Key Cryptography.

V. CONCLUSION

This paper concentrates on formal methods on IoT ap-
plication layer protocol’s, MQTT and CoAP, for improving
security and detecting security issues at an early stage. Besides
providing information on security issues on application layers
in general, and several reported issues, the main contribution
of this paper is an overview of application of formal methods
for the selected protocols, including details for each approach.
That summary reviews existing work, enabling a good starting
point for further research.

Existing publications can be distinguished in three fields
(see table I). It shows, that the functional checks of protocols
- as qualitative and quantitative analysis - is much more com-
mon than considering implementations or verifying security
properties. It has to be noted, that Quality of Service level
is the most often considered term in publications, nearly all
publications in subsection IV-A are referencing it. Moreover,
there are many more publications dealing with MQTT than
with CoAP. Implementations checked with formal methods
cover MOSQUITTO, Emqttd and RabbitMQ for MQTT and
Californium, CoAPthon and txThings. An overview of meth-
ods used for each protocol can be found in Fig. 2, which
shows, that nearly for each paper a different method is used
(except for UPPAAL used twice). It also shows, that none of
the tools is used for different fields of application, e.g. for

verifying security properties and performing a qualitative and
quantitative analysis.

Open challenges include the formal verification of MQTT
v5.0 released in April 2019, since all the publications cover
older versions. There, formal verifications for security proper-
ties and making sure that encryption and authentication can be
covered, might be the most urgent issues to address. Besides
checking more implementations for MQTT and CoAP, the
influence of different versions of a protocol in the environment
of the widespread tools implementing MQTT and CoAP needs
to be further investigated.

Another open challenge might be bringing formal verifi-
cation into play at early stages, when a protocol is still in
its standardization process, in order to avoid situations as it
happened with MQTT, where the specification contained some
gaps possibly leading to misunderstandings.

[1]

[5]

[6]
[7]

[8]

[9]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]

REFERENCES

V. Karagiannis, P. Chatzimisios, F. Vazquez-Gallego, and J. Alonso-
Zarate, “A survey on application layer protocols for the internet of
things,” Transaction on loT and Cloud computing, vol. 3, no. 1, pp.
11-17, 2015.

D. Q. Federico Maggi, Rainer Vosseler, “The fragility of industrial iot’s
data backbone. security and privacy issues in mqtt and coap protocols,”
2018, accessed at: 2019-08-29.

K. Keerthi, I. Roy, A. Hazra, and C. Rebeiro, “Formal verification for
security in iot devices,” in Security and Fault Tolerance in Internet of
Things. Springer, 2019, pp. 179-200.

P. Merlin, “A methodology for the design and implementation of com-
munication protocols,” IEEE Transactions on communications, vol. 24,
no. 6, pp. 614-621, 1976.

R. Braden, “Requirements for internet hosts-communication layers,”
1989.

——, “Requirements for internet hosts-application and support,” 1989.
M. Wu, T.-J. Lu, E-Y. Ling, J. Sun, and H.-Y. Du, “Research on the
architecture of internet of things,” in 2010 3rd International Conference
on Advanced Computer Theory and Engineering (ICACTE), vol. 5.
IEEE, 2010, pp. V5-484.

S. Marksteiner, V. J. E. Jimenez, H. Valiant, and H. Zeiner, “An overview
of wireless iot protocol security in the smart home domain,” in 2017
Internet of Things Business Models, Users, and Networks, Nov 2017,
pp. 1-8.

S. Shah, S. S. A. Simnani, and M. T. Banday, “A study of security attacks
on internet of things and its possible solutions,” in 2018 International
Conference on Automation and Computational Engineering (ICACE).
IEEE, 2018, pp. 203-209.

“Mgqtt,” accessed at: 2019-08-01. [Online]. Available: http://mqtt.org/faq
Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (coap),” 2014.

M. E. Whitman and H. J. Mattord, Principles of information security.
Cengage Learning, 2011.

L. Nastase, “Security in the internet of things: A survey on application
layer protocols,” in 2017 21st International Conference on Control
Systems and Computer Science (CSCS). 1EEE, 2017, pp. 659-666.

S. Arvind and V. A. Narayanan, “An overview of security in coap:
Attack and analysis,” in 2019 5th International Conference on Advanced
Computing & Communication Systems (ICACCS). 1EEE, 2019, pp.
655-660.

R. M. Needham and M. D. Schroeder, “Using encryption for authenti-
cation in large networks of computers,” Communications of the ACM,
vol. 21, no. 12, pp. 993-999, 1978.

G. Lowe, “Breaking and fixing the needham-schroeder public-key pro-
tocol using fdr,” in International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems. Springer, 1996, pp. 147-166.
F. U. Manual, “Failures-divergence refinement,” 2010.

D. Basin, C. Cremers, and C. Meadows, “Model checking security
protocols,” in Handbook of Model Checking. Springer, 2018, pp. 727—
762.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

(38]
[39]

[40]

[41]

B. Aziz, “A formal model and analysis of the mq telemetry transport
protocol,” in 2014 Ninth International Conference on Availability, Reli-
ability and Security, Sep. 2014, pp. 59-68.

B. Aziz, “A formal model and analysis of an iot protocol,” Ad
Hoc Networks, vol. 36, pp. 49 — 57, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870515001183
M. Berger and K. Honda, “The two-phase commitment protocol in an
extended 7r-calculus,” Electronic Notes in Theoretical Computer Science,
vol. 39, no. 1, pp. 21-46, 2003.

B. Aziz and G. Hamilton, “Detecting man-in-the-middle attacks by
precise timing,” in 2009 Third International Conference on Emerging
Security Information, Systems and Technologies. 1EEE, 2009, pp. 81—
86.

A. Rodriguez, L. M. Kristensen, and A. Rutle, “On modelling and
validation of the mqtt iot protocol for m2m communication,” CEUR
Workshop Proceedings, 2018.

K. Jensen, Coloured Petri nets: basic concepts, analysis methods and
practical use. Springer Science & Business Media, 2013, vol. 1.

M. Houimli, L. Kahloul, and S. Benaoun, “Formal specification, verifica-
tion and evaluation of the mqtt protocol in the internet of things,” in 2017
International Conference on Mathematics and Information Technology
(ICMIT), Dec 2017, pp. 214-221.

A. David, K. G. Larsen, A. Legay, M. Mikucionis, and D. B. Poulsen,
“Uppaal smc tutorial,” International Journal on Software Tools for
Technology Transfer, vol. 17, no. 4, pp. 397-415, Aug 2015. [Online].
Available: https://doi.org/10.1007/s10009-014-0361-y

J. Hcine and I. B. Hafaiedh, “Formal-based modeling and analysis of a
network communication protocol for iot: Mqtt protocol,” in International
conference on the Sciences of Electronics, Technologies of Information
and Telecommunications. Springer, 2018, pp. 350-360.

M. Diwan and M. D’Souza, “A framework for modeling and verifying iot
communication protocols,” in International Symposium on Dependable
Software Engineering: Theories, Tools, and Applications. Springer,
2017, pp. 266-280.

J.-R. Abrial, Modeling in Event-B: system and software engineering.
Cambridge University Press, 2010.

J.-R. Abrial, M. Butler, S. Hallerstede, T. S. Hoang, F. Mehta, and
L. Voisin, “Rodin: an open toolset for modelling and reasoning in
event-b,” International journal on software tools for technology transfer,
vol. 12, no. 6, pp. 447-466, 2010.

A. J. Vattakunnel, N. S. Kumar, and G. S. Kumar, “Modelling
and verification of coap over routing layer using spin model
checker,” Procedia Computer Science, vol. 93, pp. 299 -
308, 2016, proceedings of the 6th International Conference on
Advances in Computing and Communications. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050916314557

G. J. Holzmann, The SPIN model checker: Primer and reference manual.
Addison-Wesley Reading, 2004, vol. 1003.

K. Mladenov, S. van Winsen, C. Mavrakis, and K. Cyber, “Formal
verification of the implementation of the mqtt protocol in iot devices,”
SNE Master Research Projects 2016-2017, 2017.

S. Herndndez Ramos, M. T. Villalba, and R. Lacuesta, “Mqtt security:
A novel fuzzing approach,” Wireless Communications and Mobile Com-
puting, vol. 2018, 2018.

W. Tromp, “Identifying specification violations in coap libraries. an au-
tomata learning approach,” Master’s thesis, Open Universiteit Nederland,
2017.

J. Y. Kim, R. Holz, W. Hu, and S. Jha, “Automated analysis of
secure internet of things protocols,” in Proceedings of the 33rd Annual
Computer Security Applications Conference. ACM, 2017, pp. 238-249.
S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The tamarin prover for
the symbolic analysis of security protocols,” in International Conference
on Computer Aided Verification. ~Springer, 2013, pp. 696-701.

D. Basin, C. Cremers, J. Dreier, and R. Sasse, “Symbolically analyzing
security protocols using tamarin,” ACM SIGLOG News, 2017.

D. Dolev and A. Yao, “On the security of public key protocols,” IEEE
Transactions on information theory, vol. 29, no. 2, pp. 198-208, 1983.
B. LaMacchia, K. Lauter, and A. Mityagin, “Stronger security of
authenticated key exchange,” in International conference on provable
security. Springer, 2007, pp. 1-16.

J. Y. Kim, W. Hu, D. Sarkar, and S. Jha, “Esiot: enabling secure
management of the internet of things,” in Proceedings of the 10th ACM
Conference on Security and Privacy in Wireless and Mobile Networks.
ACM, 2017, pp. 219-229.

