
Save Willy: ...

Abstract
Most privilege escalation exploits targeting Docker con-

tainers on Linux abuse vulnerable system calls to threaten
the container’s isolation. Nevertheless, reducing the surface
of this attack vector receives insufficient attention—despite
highly effective system call filtering capabilities of the Linux
kernel through seccomp. Generally, creating robust, yet thor-
ough, seccomp policies by hand is a difficult task and hence
calls for automated assistance. Various seccomp policy gener-
ation frameworks build upon dynamic analysis. Yet, inherent
characteristics of dynamic, testing-based analysis are prone
to false negatives, an intolerable inconvenience in production
systems. On the other hand, static analysis has the power to
produce conservatively overapproximated, but correct results.

In this paper, we present JESSE, a static analysis based
framework for generating seccomp policies for Linux Docker
containers. Specifically, we design and implement an abstract
interpretation that assists the analyst in identifying the system
calls that are vital for C/C++ binaries. By combining JESSE’s
abstract interpretation with container and library debloating
techniques, we produce accurate and highly-effective sec-
comp policies that restrict up to 45% more system calls than
the Docker’s default seccomp policy on average. We have
applied JESSE to construe seccomp policies for five of the
most prominent Docker containers. Overall, our evaluation
shows that (contrary to dynamic analysis) JESSE does not
introduce any false negatives and offers effective protection
against real-world exploits.

1 Introduction

Recent advances in Operating System (OS) level virtualiza-
tion have successfully propagated this, once rarely used, tech-
nology to the masses. In general, OS-level virtualization tech-
niques leverage services of the underlying OS to establish
light-weight isolated execution environments, known as con-
tainers. Prominent container implementations are Linux Con-
tainers (LXC) [4], BSD jails [1], and Solaris Zones [5]; yet

it was Docker [2] that gained the most popularity. Docker
has become the de facto standard for containers in both pri-
vate and industry sectors for shipping various applications in
a convenient and platform-independent way. Unlike system
virtualization techniques that implement a virtual hardware
interface, i.e., the Virtual Machine (VM), that offers fully-
fledged execution environments to OSes, containers share the
same OS kernel with their host and solely abstract the view
on global kernel resources. As such, potential kernel exploits
originated from inside a container can impair the security of
other containers on the same system and even the host itself.

The principle of least privilege mandates every entity to
access only those resources that are necessary for its execu-
tion. Contrary to this concept, modern OS architectures offer
applications a uniform interface, i.e., the system call inter-
face, that grants access to an immense number of system calls,
entirely independent of how many system calls the applica-
tion requires. For instance, the Linux kernel v5.5 comprises
347 distinct system calls, excluding the number of compat-
ibility system calls. Sadly, a vulnerability in one of those
system calls has the potential to open the gate to the underly-
ing kernel [22, 23, 30], despite modern isolation and security
mechanisms, including Linux namespaces, control groups,
capabilities, Mandatory Access Control (MAC), Kernel Ad-
dress Space Layout Randomization (KASLR), and Supervisor
Mode Execution and Access Prevention (SMEP/SMAP). In-
deed, most privilege escalation exploits targeting containers
on Linux abuse vulnerable system calls to overcome the iso-
lation enforced by the container and Linux kernel [43].

One approach to mitigate this threat is to remove or filter
out not needed system calls that are otherwise freely available
to applications and containers. For instance, recent advances
in library debloating [8, 37, 38, 48, 50, 51] remove code re-
gions in the process’ address space that is irrelevant to the
program’s execution. While library debloating mainly focuses
on reducing Return-Oriented Programming (ROP) (or similar
code-reuse) gadgets, it does not eliminate the threat; unavoid-
able remaining gadgets could allow the attacker to still mount
an attack that, for instance, abuses a vulnerable system call

1

handler—not used by the program—to subvert the system.
Contrary, as a last line of defense, the seccomp (secure com-
putation) facility of the Linux kernel provides the necessary
means to establish system call filters, which restrain applica-
tions and containers to use only white-listed system calls [17].
However, to this point, there is no easy way to automatically
tailor seccomp policies that are suitable for general-purpose
applications and containers.

So far, researchers have suggested different techniques
that dynamically analyze applications to identify the system
calls required by the application [47] or container [56] un-
der test. Specifically, they employ automatic test generationWe need

some
good
publica-
tions here.
Also,
mention
further
research
strategies
if we have
missed
any so far.
We should
also prob-
ably incor-
porate all
those de-
bloating!!!
papers at
this point.

We need
some
good
publica-
tions here.
Also,
mention
further
research
strategies
if we have
missed
any so far.
We should
also prob-
ably incor-
porate all
those de-
bloating!!!
papers at
this point.

techniques that aim to trigger different program behaviors,
which, in turn, identify different system calls required for the
particular functionality. This strategy allows collecting most
of the system calls that are similarly accessed in production.
Nevertheless, dynamic analysis suffers from incompleteness,
as the triggered execution traces severely limit the analysis; if
a particular system call has not been identified by the dynamic
analysis, which bases its results on past execution traces, it
does not necessarily mean that it will not be called in pro-
duction. In fact, we have identified a set of system calls that
were either completely missed or falsely interpreted by the
dynamic analysis based policy generation techniques of Wan
et al. [56] (in both cases, normally authorized system calls
were blacklisted). Consequently, due to incomplete informa-
tion, false negatives can interrupt and terminate the execution
of sandboxed environments, which is highly impractical in
production systems.

In this paper, we present JESSE, a system that leverages
static analysis to create seccomp policies to establish a safe
environment for Docker containers. Specifically, we statically
analyze non-obfuscated programs and the associated libraries
to identify all system call invocations. Since the invocations
of system calls do not necessarily reveal the requested sys-
tem call (a system call invocation is merely the execution
of the syscall instruction),1 we leverage abstract interpre-
tation [21] to derive the contextual semantics required to
approximate the set of system calls a container should be
authorized to use. We consider the fact that essential general-
purpose libraries, such as libc on Linux, provide user-space
applications with wrappers to a vast number of system calls.
To approach this, we further apply dead code elimination tech-
niques to narrow down the set of all identified system calls
in the considered binaries to the set of system calls that are
necessary for the program’s genuine execution. By applying
abstract interpretation techniques, we ensure that the gathered
results, by design, cannot introduce any false positives.

We employJESSE to generate seccomp policies for five of
the most prominent Docker container images that are available
on Docker Hub. On average, we manage to block 55.8% of all

1While we assume the analyzed binaries use the modern 64-bit fast system
call instruction, syscall, the analysis’ concepts are by no means limited to
it and can be extended to support different system call instruction variants.

system calls and hence significantly increase the effectiveness
of the default seccomp policy for Docker containers, which
conservatively blocks around 10.6% completely, and up to
20.4% in combination with restrictions of additional Linux
capabilities. Finally, we evaluate the precision and security of
our system. We need

some re-
sults re-
garding
the preci-
sion and
security

We need
some re-
sults re-
garding
the preci-
sion and
security

In summary, we make the following main contributions:

• We introduce JESSE, a static analysis based framework
for generating last line of defense Linux seccomp poli-
cies for C/C++ binaries in Docker containers.

• We develop an abstract interpretation based static analy-
sis for conservatively connecting system calls to identi-
fied syscall instructions in binaries.

• We apply JESSE to create seccomp policies for five of the
most prominent Docker containers, to thwart entailed
container escape vulnerabilities. TBD. It

would
be nice
to have
a CVE
for each
container
type in
the evalua-
tion.

TBD. It
would
be nice
to have
a CVE
for each
container
type in
the evalua-
tion.

• We evaluate JESSE and show that we manage to block
55.8% of all system calls, without false negatives as
opposed to dynamic analysis based systems.

2 Background

There exist two flavors of program analysis techniques: dy-
namic and static analysis. Due to their inherent characteristics,
both flavors differ in accuracy of the gathered analysis results,
as they might produce either false negatives or false positives.
In this paper, we consider false negatives as system calls that
were falsely missed during the analysis and hence are not
considered in the set of authorized (i.e., whitelisted) system
calls; execution attempts of these excluded system calls cause
the program to crash. Dynamic analysis is known to produce
false negatives as it solely relies on the given execution traces
of a program and cannot consider all of its execution paths.

On the other hand, we consider false positives as system
calls that were (conservatively) considered as vital during the
analysis and hence, at the risk of being never executed, were
added to the set of whitelisted system calls. Static analysis pro-
duces false positives as its assumptions abstract unnecessary
details and rather overapproximate the results. Consequently,
we resort to a specific static analysis technique, abstract in-
terpretation [21], that we utilize to establish profiles holding
whitelisted system calls, which we enforce with help of the
Linux Secure Computing mode [17,19] for individual binaries
executed in Docker containers.

2.1 Linux Secure Computing Mode
The Linux Secure Computing mode, known as seccomp [17,
19], is a feature of the Linux kernel that confines processes
to a set of black- or white-listed system calls. Optionally,
seccomp also allows filtering the system call’s arguments

2

to restrain processes further. In the most restricted mode,
SECCOMP_SET_MODE_STRICT, seccomp grants processes only
to the four system calls read(), write(), exit(), and
sigreturn(); the invocation of any other system call results
in an immediate termination of the calling process. On the
other hand, the mode SECCOMP_SET_MODE_FILTER delegates
the filtering decision to a user-provided Berkely Packet Filter
(BPF) program [] that can be installed per process; beforecitationcitation

every system call invocation, the in-kernel BPF bytecode Just
In-Time (JIT) compiler executes the BPF program, with the
invoked system call number and arguments as input, to en-
force a given policy. This allows the BPF program to decide
whether (i) to normally execute the system call, (ii) to kill
the calling process, or (iii) to return an error.

To improve the security of containers, Docker adopted sec-
comp profiles and highly simplified their usage. Instead of
requiring the user to provide complex BPF programs, Docker
expects a JSON-formatted profile that holds the black- and
white-listed set of system calls. The profile further allows
defining fine-grained policies per system call, for example,
by restricting its allowed arguments or by binding the avail-
ability of the system call to a specific Linux capability (such
as CAP_SYS_ADMIN). Docker (v18.10.0, dev) ships a default
seccomp profile that unconditionally permits 2762 (out of
347 available) system calls [6] on Linux kernel (v5.5), which
is about 80.4% of all available system calls [6, 7]. By com-
bining seccomp with Linux capabilities, the default seccomp
profile may grant up to further 34 system calls. Thus, the
default seccomp profile is very coarse-grained (it only forbids
around 10.6% of all available system calls completely and up
to 20.4% when combined with Linux capability restrictions)
the refinement of which is the main focus of this work.

2.2 Abstract Interpretation
Abstract interpretation [21] is a theory based on static analysis
that allows approximating the semantics of programs. For
instance, it has become a useful tool for detecting critical
information leaks in programs [59]. In this paper, we leveragefind

more/other
examples
(e.g.,
compiler
optimiza-
tion
Check out
this paper:
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-
shuai
Also,
check out
(at least)
slides 96
and 97 in
http://www2.informatik.uni-
freiburg.de/ heizmann/ProgramVerification/slides/20111025-
Tue.pdf

find
more/other
examples
(e.g.,
compiler
optimiza-
tion
Check out
this paper:
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-
shuai
Also,
check out
(at least)
slides 96
and 97 in
http://www2.informatik.uni-
freiburg.de/ heizmann/ProgramVerification/slides/20111025-
Tue.pdf

abstract interpretation to determine the set of system calls
that is relevant for the program’s genuine execution to tailor
seccomp policies for containers.

To identify the semantic properties of programs, abstract
interpretation operates on the program’s abstract representa-
tion. While the founders of abstract interpretation, Cousot et
al. [21], leverage finite flowcharts to represent programs, in
this paper, we resort to the more commonly used program rep-
resentation through Control-Flow Graphs (CFGs). When ap-
plying abstract interpretation to a CFG, it annotates its edges
(i.e., paths or transfers of the control-flow) with symbols rep-
resenting (possibly infinite) sets of program states. Cousot et

2Docker’s default policy whitelists 315 system calls, out of which 41
either do not exist on x86 or are (redundant) compatibility system calls.
Another 2 system calls are granted with argument restrictions.

al. model a program’s state as a mapping from variables to
their values. Once the abstract interpretation terminates, the
annotated symbols represent sets of states that can be reached
at the associated edges; if a given program state is not part of
the set of the computed program states at a particular edge in
question, the program will never reach this state at that edge,
independent of the program’s input. At the same time, the
computed sets may hold states that will never be reached. In
most cases, an exact computation of all program properties
is not feasible. Thus, abstract interpretation only provides an
overapproximation of the exact program semantics.

Since it is not feasible to explicitly store all sets of possi-
ble program states, abstract interpretation operates on a user-
provided, predefined set of symbols (S) instead. This allows
the abstract interpretation to operate on the abstract symbols
instead of the sets of concrete program states. Cousot et al.
further extend the sets of symbols to a complete lattice L that
comprises the following elements to assemble the quintuple
L = (S,≤,t,⊥,>). As such, the lattice requires a less-than-
or-equal-to relation (≤) and a join operation (t) that can be
applied on the set of symbols. Both are necessary, as they
simulate the subset relation (⊆) and the union operation (∪)
for the sets of concrete program states. This means, instead
of unifying two sets of concrete program states, the abstract
interpretation joins the symbols representing the sets; simi-
larly, instead of applying the subset relation, it uses the less-
than-or-equal-to relation from the lattice. Finally, to form
a complete lattice, it must contain a top (>) and a bottom
(⊥) element. These represent the largest and the smallest el-
ement (∀s ∈ S :⊥≤ s≤>), respectively, with regard to the
less-than-or-equal-to relation in the set of symbols S. These
elements simulate the empty set (⊥) and the universe on the
sets (>) of concrete program states.

Similar to concrete program states that are lifted to an ab-
stract representation in the form of lattice elements (s ∈ S),
abstract interpretation further requires lifting concrete oper-
ations on concrete program states to abstract operations on
lattice elements. This is where the interpretation function
(Int(e,C)) comes into play. It has to be tailored to the specific
needs such that it specifies how the basic blocks in the CFG
operate on the lattice elements. For example, in a scenario, in
which the goal is to determine whether the values of variables
in a given program are even or odd, it is the task of the inter-
pretation function to infer whether the computation results
in an even or odd value. Similar to Cousot et al., we assume
that the interpretation function receives a specific edge of the
CFG as a first argument and the complete CFG (including an-
notations of the previous rounds) as a second argument. The
interpretation function computes the new annotation symbol
for the particular edge and returns the symbol to the main
abstract interpretation algorithm to update the CFG.

Algorithm 1 describes the abstract interpretation which
statically analyzes programs by annotating the edges of the
program’s CFG with program states that can be reached at the

3

Algorithm 1: The abstract interpretation algorithm which
annotates the edges of the program’s CFG with user-
provided symbols. The annotations represent the sets of
all reachable program states at the particular edge.

Input : A CFG C = (N,E), a complete lattice
L = (S,≤,t,⊥,>), and an interpretation
function Int(e,C), with e ∈ E

Output : A CFG whose edges are annotated with
symbols representing sets that contain all
reachable program states at the particular edge

1 foreach e ∈ E do
2 annotate e with ⊥;

3 repeat
4 changes:= /0;
5 foreach e ∈ E do
6 oldAnnotation:=get annotation at e;
7 newAnnotation:=Int(e,(N,E));
8 if oldAnnotation 6= newAnnotation then
9 changes:=changes∪{(e,newAnnotation)};

10 foreach (e,newAnnotation) ∈ changes do
11 annotate e with newAnnotation;

12 until changes = /0;
13 return (N,E);

particular edge. The algorithm runs in rounds until it reaches
a fixpoint (i.e., executing another round would not change the
annotations). As input, the abstract interpretation receives a
CFG C comprising the set of nodes N and set of edges E, a
complete lattice L, and an interpretation function Int(e,C).
During initialization, the algorithm annotates all edges in the
CFG with the bottom element of the lattice (lines 1 to 2). Then,
the computation enters the main loop (lines 3 to 12), which
is responsible for updating the annotations (lines 10 to 11).
Specifically, the main loop calls the interpretation function in
line 7 until the annotations of CFG do not change anymore
(i.e., until the abstract interpretation reaches a fixpoint).

To demonstrate how to leverage abstract interpretation,
let us consider a scenario in which we analyze a part of a
function to determine whether or not it will always return even
values in the general-purpose register rcx. In this context,Consider

includ-
ing the
example
program
already
here. It is
not clear
that you
decre-
ment rcx.
Interpreta-
tion func-
tion is
not clear
without an
example.

Consider
includ-
ing the
example
program
already
here. It is
not clear
that you
decre-
ment rcx.
Interpreta-
tion func-
tion is
not clear
without an
example.

we specify a lattice L̇ = (Ṡ,≤̇, ṫ,⊥̇,>̇) and an interpretation
function ˙Int(e,C). The lattice L̇ comprises the set of symbols
Ṡ := {B,E,O,A}. The symbol B (blank) represents the empty
set of states (i.e., we use B to represent unreachable edges);
the symbols O and E describe that rcx can only hold odd
(O) or even (E) values, respectively; and the symbol A (all)
means that rcx can hold any (whether even or odd) natural
number. Further, the bottom (⊥̇) and the top (>̇) elements
are represented by B and A. These abstract symbols over-
approximate the concrete set of values. That is, if an edge
is annotated with A, it means that rcx can hold any natural

Algorithm 2: Interpretation function ˙Int(e,C) that deter-
mines the new annotation in form of a lattice element for
the provided edge e.

Input : Edge e and the annotated control-flow graph C
Output : Lattice element s ∈ Ṡ

1 bb := origin(e);
2 pre := B;
3 foreach e′ ∈ incoming(bb) do
4 a :=annotation at edge e′;
5 pre := preṫa;

6 if pre = B then
7 return B;

8 instr :=extract instruction in bb;
9 if instr writes to rcx then

10 imm :=extract immediate in instr;

11 return

{
E if imm mod 2 = 0
O otherwise

;

12 else if instr =loop rel then
13 rel :=extract jump target in instr;
14 if e targets rel then

15 return


A if pre = A
O if pre = E
E otherwise

;

16 else

17 return

{
B if pre = E
E otherwise

;

number at the particular edge, but it does not have to.
Further, we define the less-than-or-equal-to (≤̇) relation

and the join (ṫ) operation of the lattice L̇ as follows. B is the
smallest and A is the largest element (E and O are incompara-
ble). That is, with a,b ∈ Ṡ:

a≤̇ b :⇐⇒ (a = B)∨ (b = A)∨ (a = b)

A join with B (the smallest element) always returns the orig-
inal element. In all the other cases (i.e., AṫE, AṫO, EṫA,
OṫA, OṫE, and EṫO), the result is A:

aṫb :=


a if b = B
b if a = B
a if a = b
A otherwise

Algorithm 2 illustrates the interpretation function ˙Int(e,C).
This function takes an edge e of the CFG as first argument,
the CFG C itself as second argument, and returns a lattice
element s ∈ Ṡ as annotation for the provided edge e. To com-
pute the annotation, the function first joins the annotations of

4

mov rcx,

10

mark:

loop mark

ret

B

B

B

Round 0:

BB1

BB2

BB3

e1

e2e3

mov rcx,

10

mark:

loop mark

ret

E

B

B

Round 1:
mov rcx,

10

mark:

loop mark

ret

E

O

B

Round 2:
mov rcx,

10

mark:

loop mark

ret

E

A

E

Round 3:

Figure 1: Abstract interpretation is applied to the program
(in form or a CFG that decrements the value of rcx from 10
to 0 in a loop) to determine whether the returned value in
rcx is even (E) or odd (O). The iterative annotations of the
CFG added by the abstract interpretation are illustrated in
four rounds.

incoming edges of the basic block from which the edge in the
first argument originates (origin(e) returns the basic block
from which e originates; incoming(b) returns all edges that
target b) in lines 1 to 5. Assuming the basic block is reachable,
the interpretation function extracts the instruction (for sim-
plicity reasons, we assume that the basic block holds only one
instruction) in line 8 and abstractly simulates its execution.
In case the instruction writes to rcx, the function interprets
the immediate value imm and returns E or O, depending on
whether imm is even or odd (lines 9 to 11). If the extracted
instruction is a branch to the beginning of the loop (loop
rel), the function distinguishes between two cases depending
on whether the edge represents a jump to the beginning of the
loop or a fallthrough. In the latter, we return B if the join of the
annotations on the incoming edges results in E, because loop
decrements rcx and only terminates the loop if the result is
zero and since the decrement of an even number can never be
zero, this edge is never taken. Else, we return E, because rcx
is guaranteed to be zero if it falls through and zero is even.
In the case of the jump, we only have to consider that rcx
is decremented by the loop instructions and that this flips it
from even to odd and vice versa. In the case of A, this does
not matter and we preserve it.

To collect the building blocks of the abstract interpretation,
Figure 1 illustrates the iterative annotation results of applied
to our code fragment example in the form of a CFG. We
start in Round 0 (on the left) with all edge annotations set
to B. In Round 1, the edge leaving BB1 (e1) is annotated
with E, because BB1 always sets rcx to 10 which is an even
number. The other annotations do not change, because theCould you

annotate
all edges
equally
pls? Also,
maybe
use some-
thing
like that:
e1:bot in
the figure

Could you
annotate
all edges
equally
pls? Also,
maybe
use some-
thing
like that:
e1:bot in
the figure

union of the edges e1 and e2 in round zero is B which means
that the control-flow never reaches BB2 in this round. Hence,

Adjust!Adjust!

it does not reach the edges e2 and e3, too. In Round 2, the
same argumentation as in Round 1 still applies for e1 and
the union of e1 and e2 now returns E. Thus, the edges of
e2 is annotated with O, because decrementing an even value

always results in an odd value. The annotation of e3 remains B
because this edge is not reachable since zero is an even value,
and we currently deduce that rcx is odd when the control-flow
reaches the end of BB2. In the last round, we annotate e2 with
A, because the union of E and O is A and incrementing an
arbitrary natural number results in another arbitrary number.
In the case of e3, the same situation applies initially, but since
the edge is only taken when rcx contains zero, the analysis
recognizes that zero is even and annotates e3 with E. Which

algorithm-
s/tools
are used
for that? I
mean the
analysis
needs to
be quite
good in
under-
standing
the pro-
gram’s
semantics!
Provide
more info
on that in
the BG.

Which
algorithm-
s/tools
are used
for that? I
mean the
analysis
needs to
be quite
good in
under-
standing
the pro-
gram’s
semantics!
Provide
more info
on that in
the BG.

this still needs more restructuring and polishing but lets focus on the more im-
portant parts.

3 Threat Model

We assume an attacker inside of a Docker container, from
which intends to escape; the attacker aims to take over the
host system by abusing the system call interface to exploit
kernel vulnerabilities. We assume the container to be isolated
from other applications via state-of-the-art OS-level virtual-
ization techniques including Linux namespaces [35], control
groups [14], and capabilities [16, 26]. Further, we assume the
system employs kernel and user space Address Space Lay-
out Randomization (ASLR) [25, 42] and is protected against
code-injection attacks through SMEP/SMAP [18, 32, 57] and
effective W^X policy enforcement mechanisms. In addition,
defenses against data-oriented attacks [15, 36, 44, 46] are or-
thogonal to our work and can be applied independently. The
same applies to container [], configuration [37], and library
debloating [] techniques that can further reduce the attack
vector. Refs!Refs!

Under the assumption that the upper state-of-the-art de-
fenses restrain the attacker inside the isolated environment,
potential memory corruption vulnerabilities in system call
handlers can still allow establishing primitives that enable
them to read or write to the kernel memory arbitrarily. Such
primitives can be abused to (i) leak information to defeat
KASLR, (ii) deactivate SMEP/SMAP, and hence (iii) pave
the way for the attacker to inject and execute her payload. In
order to limit this attack vector, we concentrate on reducing
the system call interface that is available to the attacker.

4 System Call Number Analysis

In this work, we use static analysis to identify the set of sys-
tem calls a program requires for its execution. This set of
system calls allows us to automatically compile effective sec-
comp policies for Docker containers to filter out unnecessary
and potentially vulnerable system calls (that would have been
otherwise freely available) and hence reinforce the isolation
capabilities of Docker containers on Linux. In the following,
we present the building blocks that allow us to harvest the
needed system calls from Executable and Linkable Format
(ELF) binaries. Specifically, we statically analyze programs

5

and their required libraries to locate all invocations of the
syscall instruction. Further, by leveraging abstract interpre-
tation, we derive the contextual semantics so as to identify
the system call. We divide our analysis into two stages. In
the first stage, JESSE assembles a CFG for each function in
the given binary and identifies the locations of the syscall
instructions. The second stage leverages our abstract interpre-
tation scheme to derive the system call number that is passed
as argument to the identified syscall instruction.

4.1 Control-Flow Graph Construction
The CFG construction is the first step of our analysis. It trans-
forms the code in the binary into a CFG, which can be further
processed by the abstract interpretation (§ 2.2). A CFG is a
tuple (N,E) comprising a set of nodes (i.e., basic blocks) N
and a set of edges (i.e., control-flow transfers between basic
blocks) E. Since inaccuracies in the CFG can produce incor-
rect assumptions for the abstract interpretation, it is crucial
that the CFG fulfils the following three requirements: ¶ Cor-
rectness of N; · Completeness of N; and ¸ correctness of
E. These requirements are necessary as their violation could
lead to misinterpretation of the target binaries.

Unfortunately, not every CFG construction framework as-
sures the requirements · or ¸. For instance, both angr [53,
55] and radare [49] can miss basic blocks and/or introduce
invalid edges in certain situations. For instance, angr’s static
analysis based CFG generation tool, CFGFast, can miss code
(i.e., violate ·) on indirect branches [9] (i.e., the branch
target addresses are computed at run-time). Respectively,
angr’s symbolic execution based CFG generation mechanism,
CFGEmulated, can introduce illegal edges (i.e., violate ¸), be-
cause it relies on symbolic execution to overapproximate the
set of possible jump targets [9]. Consequently, instead of rely-
ing on (potentially insufficient) properties of CFG generation
tools, we extend the minimalistic Lightweight Disassembler
(LWD) [27] to provide the upper guarantees for control-flows
across program and library binaries.

Correctness of N. Generally, all basic blocks in a CFG must
have a single entry and exit point (and correspond to a code
sequence in the binary). Further, branch instructions that
transfer the program’s control-flow to a location other than the
immediately following instruction conclude the basic block.
Most CFG construction tools provide this guaranty.

Correctness of E. Contrary to conventional CFG construction
frameworks, LWD only considers edges of direct branches
(including direct relative, absolute, and (un)conditional
branches); it avoids heuristics for indirect branches whose
targets depend on general-purpose register contents (other
than rip) that cannot be statically determined. For instance,
the instructions ret and jmp reg always conclude a basic
block, yet they do not introduce any edges.

Completeness of N. Note that our guarantees concerning the

correctness of E can lead to undiscovered code sequences
that can hold syscall instructions; without considering all
code regions, LWD would miss (in this way) hidden syscall
instructions during the CFG construction. To counteract this
issue, we extend LWD to maintain an interval tree that facili-
tates coverage monitoring of the binary’s code section. LWD
updates the interval tree with the address of every disassem-
bled instruction that is placed into a basic block of the CFG
until it fully covers the binary’s code section.

Further, we modify LWD such that it does not regard
syscalls as control-flow changing instructions. Instead, they
are regarded as instructions that can alter registers according
to the Linux calling conventions of the x86-64 Application
Binary Interface (ABI) [31]. In addition, we cause LWD to
split the basic blocks holding a syscall instruction into two
basic blocks that we connect through an artificial edge. In this
way, we ensure that the second part of the split basic block
begins with the syscall instruction. This strategy simplifies
the identification of the system call number that is passed as
a parameter for syscall.

4.2 System Call Number Identification
The modern x86-64 architecture implements the fast system
call instruction, syscall [32], that allows less-privileged
user-space applications (ring 3) to make use of services
provided by the high-privileged kernel (ring 0). Upon the
execution of the syscall instruction, the system switches
the context and executes the registered system call dispatcher
in kernel space. The system call dispatcher then inspects the
number passed in the rax register to determine which sys-
tem call handler has been requested [31]. As such, we apply
abstract interpretation (§ 2.2) to determine the system call
number (that is passed in rax) for every identified syscall
instruction in the CFG of the given binary. In the following,
we define a complete lattice L̇ and the interpretation function
˙Int(e,C) that form our abstract interpretation.

4.2.1 Defining the Lattice

The lattice L̇ of our abstract interpretation is a quintuple
(Ṡ,≤̇, ṫ,⊥̇,>̇). Note that the system call numbers that are
passed through the rax register to the system call dispatcher
are neither read from memory nor are they the result of arith-
metic computations. Instead, the rax register is either (i) ini-
tialized with an immutable immediate instruction operand or
(ii) assigned a value from a different register. While (i) can be
trivially determined by identifying the assignment of rax, pin-
pointing the exact value in (ii) must be accomplished through
constant propagation techniques. To address both cases, we
define our lattice to keep track of the constant values that
are propagated through the general-purpose registers.3 Con-

3We exclude rsp (stack pointer) and consider only 15 general-purpose
registers. These include rbp as the compiler can reuse the frame pointer.

6

sequently, we define every element s ∈ Ṡ to hold either the
symbol NX (i.e., the neutral element; the associated edge gets
Never eXecuted) or a 15-dimensional vector (i.e., the register
state). This vector maps each register to an element in the
set {X ,0, . . . ,264− 1} (i.e., to a constant or to an unknown
value X). Note that we did not limit our analysis to merely
considering the set of existing system call numbers; instead
we decided to consider the complete range of numbers. This
decision does not affect the performance and allows us to ap-
ply the analysis to system calls that could be potentially added
in the future. Formally, Ṡ adheres to the following definition:

Ṡ := {NX}∪ f : R→{X ,0, . . . ,264−1})

with R representing the set of general-purpose registers:

R := {r[a|b|c|d]x, r[s|d]i, rbp, r[8-15]}

Further, we define the less-than-or-equal-to relation ≤̇,
with NX as the smallest element. Two vectors a,b ∈ S\{NX}
fulfill a ≤̇ b if they are identical or if elements of b differ only
in their mapping to X . Hence, the following holds for ≤̇:

a≤̇ b :⇐⇒ (a = NX)∨
∧
i∈R

((a(i) = b(i))∨ (b(i) = X))

The join operation ṫ unifies two lattice element vectors
a,b ∈ Ṡ. By unifying two vectors, for each element (i.e., reg-
ister) of the new vector, we preserve the old element’s value
(if both vector elements are identical). Otherwise, we assign
the symbol X to the new element, as the associated register
can hold multiple values. Further, if either a or b is assigned
the value of the neutral element, NX , the join operation takes
the assignment of the respective other lattice element. Thus,
the following defines ṫ:

a ṫb :=


a if b = NX
b if a = NX

λr ∈ R.r 7→

{
a(r) if a(r) = b(r)
X if a(r) 6= b(r)

else

Finally, we specify the bottom element of the lattice L̇
(⊥̇) to be the smallest element (i.e., ∀a ∈ Ṡ : ⊥̇≤̇ a) and the
top element (>̇) of the lattice to be the largest element (i.e.,
∀a∈ Ṡ : a≤̇ >̇). Therefore, ⊥̇ inevitably represents NX . Also,
since the vector that assigns all registers to X stands for all
possible program states, >̇ represents λr ∈ R.r 7→ X :

⊥̇ := NX

>̇ := λr ∈ R.r 7→ X

4.2.2 Defining the Interpretation Function

Abstract interpretation leverages an interpretation function to
project how the basic blocks in the CFG operate on abstract

Algorithm 3: Interpretation function ˙Int(e,C) that deter-
mines the register state for the given edge e by propagat-
ing constants and determining constant assignments to
registers in the preceding basic block.

Input :Edge e and an annotated control-flow graph C
Output :Lattice element post ∈ Ṡ

1 pre := NX ;
2 foreach e′ ∈ incoming(origin(e)) do
3 a := get annotation at edge e′ in C;
4 pre := pre ṫa;

5 if pre = NX then
6 return NX ;

7 S:=(initial) start state of symbolic interpreter;
8 foreach r ∈ R do
9 if pre(r) 6= X then

10 set register r to pre(r) in S;

11 Symbolically execute origin(e) starting with start state S;
12 F :=the logic formula resulting from the symbolic

execution;
13 post:=λr ∈ R.r 7→ X ;
14 if F is satisfiable then
15 foreach r ∈ R do
16 if there is only one value for r such that F is

satisfiable then
17 post(r):=the unique value for r that

preserves the satisfiability of F ;

18 return post;

lattice elements that represent program, or in our case, reg-
ister states (§ 2.2). To identify the exact system call number
in rax, our interpretation function applies symbolic execu-
tion [53–55] . Specifically, we leverage the symbolic exe- many

many refs
many
many refs

cution framework angr [9] to propagate already assigned
constant values (in the register state) and to determine the
register assignment in basic blocks. Angr converts a loop-free
sequence of x86-64 instructions (i.e., a basic block) into an
equivalent logic formula that represents all possible execution
traces of the basic block. By means of a Satisfiability Modulo
Theories (SMT) solver (e.g., Z3 [58]), the interpretation func-
tion checks whether the formula can be satisfied, and if so, it
determines the exact constant values assigned to the register
state. Subsequently, the interpretation function propagates
the lattice elements to the main abstract interpretation algo-
rithm (which, in turn, incorporates the results by annotating
the edges) to eventually identify the system call a particular
syscall instruction refers to.

To further clarify the details, Algorithm 3 describes the
interpretation function ˙Int(e,C) that receives an edge e and
an annotated CFG C as parameters. The interpretation func-
tion identifies the basic block, origin, out of which the given

7

edge e originates, and collects annotations of origin’s incom-
ing edges. To propagate constants in the register state that
precedes the basic block origin, the algorithm joins the anno-
tations of its incomming edges in lines 1 to 4. This defines the
initial state of origin. Then, in lines 7 to 11, the interpretation
function transforms the origin’s initial (register) state into
its symbolic representation and uses angr to symbolically
execute the basic block. At this point, the function instructs
angr to transform the basic block into a logic formula (that
expresses the constraints given by the basic block). For each
register r ∈ R, angr extends the logic formula by a clause stat-
ing the registers that hold a constant value at the basic block’s
entry point. Once angr finalizes the logic formula, we use
angr’s SMT solver to determine which of the registers in R
hold a constant value after executing the basic block (lines 13
to 17). This concludes the interpretation function, which then
returns a lattice element, representing the register state after
executing the basic block origin (i.e., the annotation for the
edge e), to continue the abstract interpretation (Algorithm 1).

4.2.3 Applying Abstract Interpretation

Given the right tools at hand (CFG C, Lattice L̇, and ˙Int(e,C)),
we are able to apply abstract interpretation to identify the
system call number that is passed to an identified syscall
instruction in a binary. Once, the abstract interpretation has
made a pass through the CFG, every edge in the CFG will
be annotated with a lattice element representing the regis-
ter state after each basic block. This includes the artificially
included edge e′ that immediately precedes the identified
syscall instruction (§ 4.1). That is, to determine the system
call number for a particular syscall instruction, we have
to examine the annotation of e′ and extract the final value
from the rax register. In case rax maps to a constant value
(rax ∈ {0, ...,264−1}), we can be sure that the syscall in-
struction will always receive the same system call number.
Otherwise, if rax maps to X , we will not be able to deduce
the system call number. In this case, we inform the analyst by
stating the incompleteness of the analysis; she will have to
complete the result before generating the seccomp filter.

5 Refining the Seccomp Policy for Docker

We demonstrate the effectiveness of JESSE by generating
seccomp filters for Docker containers. Specifically, for each
involved program in the container, we leverage the introduced
abstract interpretation to identify the system calls that are
essential for its legitimate execution (§ 4). This set of system
calls allows us to compile and apply an effective seccomp
policy that forbids applications to execute unneeded and po-
tentially vulnerable system calls inside the Docker container.

5.1 Dissecting Docker Containers

Docker uses a Dockerfile (i.e., a structured document holding
instructions) to build containers. Amongst other things, this
file specifies, the entry point, ENTRYPOINT (or CMD), represent-
ing the main program that is to be executed inside the isolated
environment. Although, it is advised to provide only one ser-
vice per container, it is not strictly prohibited to share one
container among multiple services. Also, even if the container
comprises only one service, its setup can require additional
programs, e.g., to prepare the environment (i.e., switch to an-
other user, initialize a database, etc.). In other words, the spec-
ified executable can engage multiple programs in the Docker
image, with each requiring an own set of libraries. Unfortu-
nately, Docker images are known to incorporate a significant
amount of unneeded programs and libraries [12,24,39,50,51].
Consequently, before JESSE can determine the inevitable set
of system calls required for the container, it identifies all pro-
grams that are necessary to prepare and provide the intended
service(s). To achieve this, we leverage existing container de-
bloating techniques [12,24,39,50,51] to dissect the container
image and hence precisely narrow down the set of programs
to receive accurate analysis results in the following steps.

5.2 Avoiding Unreachable Code

One of the inherent properties of shared libraries is their
general-purpose character. Similar to a Swiss army-knife,
they are built to provide functionality for all intents and pur-
poses. At the same time, due to this characteristic, libraries
are often considered as bloated [8, 48], especially in the face
of individual programs that often resort to only a very small
fraction of the entire library. For instance, recent research has
shown that 2016 Ubuntu applications make use of merely 5%
of the standard C library (i.e., libc) on average [48]. Similar
to library debloating frameworks [8, 48], we consider such more refs!more refs!

fully-blown libraries as security threats, as they can govern
the access to unneeded (and potentially vulnerable) system
calls that the target program binaries never intended to use
(in a benign setting). Consequently, before determining the
system call numbers for identified syscall instructions, we
have to locate all library code regions that are unreachable
by the benign program binaries, and exclude these from the
subsequent system call number identification.

Recent advances in code debloating on source code [48]
and (unstripped) binary level [8] have demonstrated their
effectiveness and precision in locating unreachable code in li-
braries. Given sufficient ground of research, we have indepen-
dently implemented an approach very similar to Nibbler [8],
which identifies unreachable code in libraries on binary level
by using relocation information (as we do not claim any nov-
elty results, we refer the reader to Nibbler [8]). Instead, in our
scenario, we assume a given (blackbox) framework (e.g., Nib-
bler) that allows us to identify the unreachable code regions

8

in a library for a given program binary (i.e., the dissected
container service), which we use as input for our abstract in-
terpretation based system call number analysis in the next
step. Further, we do not intend to perform this fine-grained
code reachability analysis for all libraries. Instead, we request
this code reachability information only for one, central library,
namely libc. This decision simplifies the information gath-
ering (e.g., closed-source libraries impede even binary-level
analysis as they usually avoid shipping unstripped binaries).
At the same time, by focusing on the central OS interface
(i.e., libc) that is employed by most C applications, we sub-
stantially reduce the number of all system calls. Note that
disregarding to our decision for this work, code reachability
information can be gathered from all involved libraries; we
leave this for future work.

5.3 Identifying System Calls

Once we have identified the involved binaries (including pro-
grams and their libraries, and optionally the libraries’ un-
reachable code regions), we apply JESSE to (i) unfold their
control-flows leading to a set of syscall instructions and (ii)
uncover the associated system calls (§ 4). Considering that
most C programs employ the functionality of the standard C li-
brary (libc), the net effect of our system call number analysis
results in a highly coarse-grained collection of system calls.
Generally, libc implements an essential part of the OS inter-
face that simplifies the bootstrapping of programs and assists
them with a solid foundation of general-purpose functionality
including a high number of system call wrappers that sim-
plify the communication with the OS kernel. For instance, the
libc v2.24 holds 502 syscall instructions that can call up to
264 (fixed) system calls, disregarding the generic syscall()
function that allows to call any of the available system calls.
Consequently, the naive accumulation of all system calls in
the target binaries results in a heavy overapproximation of
the system calls that are truly used and hence calls for an op-
timization that avoids unreachable code. Yet, by considering
the unreachable code information gathered in § 5.2, JESSE
considers only viable paths in libc in its system call number
analysis.

6 Evaluation

6.1 Precision Evaluation

The quality and hence strength of the generated seccomp
policies highly depends on (i) the precision and coverage of
the abstract interpretation (§ 4) and (ii) the accuracy of the
optimization to disregard unused code sequences (§ 5.2).

6.1.1 Abstract Interpretation

We demonstrate the effectiveness of JESSE by applying its
abstract interpretation based system call number identification
to the standard C library (libc). The libc v2.24 holds 502
syscall instructions that refer to 264 unique system calls.
By applying the abstract interpretation of JESSE, we were able
to link the exact system call number to 484 (96.4%) syscall
instructions. JESSE was not able to determine the system
call numbers of the remaining 18 syscalls in the libc. To
generalize the precision of JESSE’s abstract interpretation
we have applied the system call number analysis to other 13
common libraries. We have selected these by accumulating
all libraries that are used by the binaries in the /bin direc-
tory of a vanilla Debian Buster (base) image. These formed Exact

Linux
Distribu-
tion/Ver-
sion?

Exact
Linux
Distribu-
tion/Ver-
sion?

additional 292 syscall instructions, for which JESSE was
not able identify 21 system call numbers: 16 in libpthread
and 5 in librt. Therefore, in 95% of all cases, our analysis
determined the right system calls (which we have verified by
manually inspecting the binaries). For the the remaining 5%,
JESSE informed us about the non-identified system calls, such
that we were able to identify the exact cause by manually
analyzing the binaries.

The reason for the incomplete mapping is fourfold. First,
there exist functions (e.g., the syscall() function in libc)
that allow to select arbitrary system calls by specifying the
system call number in one of the function parameters. Since
the exact system call number depends on the calling function,
an analysis of the syscall() function alone, will not be able
to determine the provided value. We were able to address
this issue by generalizing our definition of the abstract inter-
pretation: in such cases, instead of identifying the value in
the rax register immediately before the syscall instruction,
we cause the abstract interpretation to identify the value in
the rdi register (i.e., the first function parameter) immedi-
ately before calling the syscall() function. Note that the
exact register depends on the called function. The second
class refers to the incompleteness of angr. For instance, angr
cannot symbolically execute certain AVX instructions (such
as vbroadcast) and hence impedes further analysis. This
engineering issue can be solved by extending the capabilities
of angr. The third class builds upon our simplified structure
of the CFG. Our current implementation ignores branch con-
ditions as this strategy significantly simplifies the analysis.
Yet, since branch conditions can influence the value in rax,
ignoring this information makes it impossible to analyze the
system call number of some syscall instructions. We leave
the implementation of an abstract interpretation that considers
the conditions of branches for future work. Finally, a very
small class of functions reads the exact system call number
from memory. Although, this strategy breaks static analysis,
contrary to dynamic analysis that cannot be sure whether
the dynamic tests have covered all possible paths of the pro-
gram [56], in this and all upper cases, JESSE is capable of

9

narrowing down the function’s exact location and let the ana-
lyst incorporate her expert knowledge to nevertheless satisfy
the policy.

syscalls in memory: we cannot analyze that (have a look at the LWN article!)

6.1.2 Avoiding Unreachable Code

We evaluated the accuracy of the discussed optimization that
allows JESSE to avoid unreachable code in libraries (§ 5.2).
Specifically, we have applied JESSE to five popular Docker
containers from Docker Hub [3]. To also compare our results
with related work [56] in the next section, we have selected
the same set of containers as used by Wan et al. (Table 2). The
applied optimization allows us to narrow down the set of all
identified syscall instructions used in container binaries to
a subset that is in fact reached by the analyzed program. This
way, we establish the foundation for accurate and effective
seccomp policies. To accommodate closed-source libraries
and to consider that most C program libraries (excluding
libc) will not dramatically increase the number system calls
, we apply the optimization only to libc. The system calls ofThink

about re-
moving
this part.
Ipmre-
cise. Yet,
if leav-
ing this,
add the
% of the
averaged
syscall
increase
by other
libraries

Think
about re-
moving
this part.
Ipmre-
cise. Yet,
if leav-
ing this,
add the
% of the
averaged
syscall
increase
by other
libraries

other dissected container binaries are accumulated through
the general system call number analysis without the additional
optimization (§ 4). In other words, we trade off accuracy for
compatibility, and still achieve more accurate results than
Docker’s default seccomp policy. Note that compared to li-
brary code debloating strategies [8, 48], JESSE does neither
need to modify the libraries’ layout in the target process’
address space nor individual code pages to remove the re-
maining, yet unneeded, code at load-time, and hence does not
suffer from increased load-time performance, or the additional
memory overhead, respectively.

Table 2 shows for each analyzed Docker container image
the percentage of system calls that we were able to restrict by
means of the generated seccomp policy. On average, the gen-
erated policies restricted 55.8% of the available system calls
and thus significantly improved the granularity of Docker’s
default seccomp policy, which prohibits, depending on the
container configuration, between 10.6% and 20.4% of the
system calls (§ 2.1). To rule out false negatives (i.e., falsely
restricted system calls) we applied the generated seccomp
policies to the Docker containers in Table 2. Once we have
fortified the containers, we run the following benchmarks that
achieve a good coverage of the containers. We have selected
the same set of benchmarks that are also used by Wan et al.
to dynamically mine seccomp policies for Docker contain-
ers [56]. Note that instead of collecting performance results
(as we did not modify the applications themselves), we focus
on stressing the containers to achieve a high coverage of the
tested container applications.

Specifically, we employ httperf [45] to test the genuine
execution of the nginx and httpd web servers. Similarly to
Wan et al. (who leverage these test suites to dynamically mine
system calls), we create 10 times 100 connections, each with

an increasing connection rate from 5 to 50 requests per second
(req/sec), with steps of 5req/sec and 2 seconds sleep time
whenever the connection rate is increased. Further, we test
the mysql containers by applying the benchmark sysbench.
In more detail, we use OLTP test with 8 parallel threads and
the maximum number of requests capped to 800. For the
postgress containers we applied the tpc-b-like and the
simple-update test of the pgbench test suite for 60 seconds
each. Finally, we applied redis-benchmark to the reddis
containers. In all cases, the containers ran through and were
not interrupted by a falsely prohibited system call. Add refs

to the re-
maining
bench-
marks

Add refs
to the re-
maining
bench-
marks6.2 Benefits and Pitfalls of Dynamic Analysis

In comparison to JESSE that prohibits around 55.8% of the
available system calls, the dynamically gathered results of
Wan et al. [56] demonstrate a more fine-grained restriction
policy of around 75.2% on average (Table 2). Generally, dy-
namic approaches generate more rigorous policies. Yet, they
highly depend on the achieved program coverage by the em-
ployed test suites, and hence merely underapproximate the
set of system calls that is vital for the analyzed program. In
other words, in case a benchmark misses an execution path
(that leads to a system call) in the target application, a po-
tential execution of the hereby introduced false negative (a
falsely unauthorized system call in the seccomp policy) will
eventually falsely crash the process. In the following, we
present pitfalls of the incompleteness of dynamic analysis
based related work [56].4

By closely analyzing the Docker container versions and the
respective seccomp policies that were dynamically generated
by Wan et al., we discovered that a set of essential system
calls was overlooked by their analysis. For instance, the dy-
namically generated seccomp policy for the redis v3.2.3
container missed the system calls rename() and fsync();
both are used for the redis’ background saving function-
ality. Another example is that the generated policy for the
nginx v1.11.1 container missed the system calls rename()
and chmod(); the system calls that define the web server’s
capabilities with regard to UNIX-domain sockets. These find-
ings are incomplete, yet, they question the credibility of the
dynamically gathered results and, at the same time, underline
the need for a more complete, static analysis.

Further, dynamic analysis builds upon that the system call
gathering framework uses a correct representation of occured
system calls. By analyzing the generated policies of Wan et al.
we have located another set of system calls that was identified
and authorized by the dynamically generated policy, yet, pro-
hibited in the statically generated policy of JESSE. In theory,
the static analysis produces an overapproximated set of the au-
thorized system calls and hence raised our attention. It turned

4We do not intend to harm our colleague’s work but rather use their results
to make a point against dynamic analysis with respect to generating system
call policies.

10

Table 1: TBD!

Binary Httpd MySQL Nginx Postgress Redis # of syscall # of Assigned
Instructions System Calls

L
ib

ra
ri

es

libc.so 3 3 3 3 3 502 498 (99.20%)
libpthread-2.24.so 3 3 3 3 3 169 153 (90.53%)
ld-2.24.so 3 3 3 3 3 43 43 (100.00%)
librt-2.24.so 3 3 3 3 30 25 (83.33%)
libnuma.so.1.0.0 3 9 9 (100.00%)
libstdc++.so.6.0.22 3 6 6 (100.00%)
libsystemd.so.0.17.0 3 6 6 (100.00%)
libaio.so.1.0.1 3 5 5 (100.00%)
libcrypt-2.24.so 3 3 3 2 (66.67%)
libuuid.so.1.3.0 3 2 2 (100.00%)
libgcrypt.so.20.1.6 3 1 1 (100.00%)
libk5crypto.so.3.1 3 1 1 (100.00%)
libselinux.so.1 3 3 1 1 (100.00%)

Pr
og

ra
m

s httpd 3 1 1 (100.00%)
mysqld 3 17 17 (100.00%)
nginx 3 7 7 (100.00%)

Table 2: Restricted system calls through seccomp policies tai-
lored for five popular Docker container images. The seccomp
policies were generated (statically) by JESSE and (dynami-
cally) through mining by Wan et al. [56].

Container Mining [56] JESSE

httpd v2.4.23 78.9% 57.3%
httpd v2.4.37 - 56.7%
mysql v5.7.13 69.7% 49.5%
mysql v8.0.14 - 45.2%
nginx v1.11.1 77.8% 65.1%
nginx v1.15.8 - 63.6%
postgres v9.5.4 71.4% 50.7%
postgres v11.1 - 43.8%
redis v3.2.3 78.6% 65.4%
redis v5.0.2 - 60.8%

out, that the dynamic analysis blindly trusted the output of
the tool sysdig that was used to accumulate the set of calledRef!Ref!

system calls. In this way, the analysis added a set of falsely
named system calls (that do not exist in the Linux kernel) into
the seccomp policy. Table 3 summarizes the set of system
calls that were explicitly authorized by the seccomp policies
of Wan et al., but do not exist in the Linux kernel. By examin-
ing the source code of sysdig, we find out that the tool uses
wrong names for certain system calls. For instance, sysdig
returns sigreturn() upon being notified of the execution of
the rt_sigreturn() system call. Similarly, sysdig falsely
uses the output of eventfd() upon the occurrence of both
eventfd() and eventfd2(), even though they represent two
different system calls.

Table 3

Container Misinterpreted System Calls

httpd v2.4.23 procexit(), signaldeliver(), sigreturn()

mysql v5.7.13
set_tls(), getresgid32(), getresuid32(),

pread(), pwrite(), procexit(),
signaldeliver(), sigreturn()

nginx v1.11.1
pread(), pwrite(),

procexit(), signaldeliver()
postgres v9.5.4 procexit(), signaldeliver(), sigreturn()
redis v3.2.3 procexit(), signaldeliver(), sigreturn()

6.3 Security Evaluation

We evaluated the added security of the generated seccomp
policy by using real-world exploits against (i) MySQL server
v5.7.14 running inside a Docker container and (ii) the Linux
kernel v4.13. The combined exploits transformed a vulnera-
ble system call into an effective write primitive that allowed
the subverted container to directly modify the kernel memory
for malicious purposes. In this context, we leveraged CVE-
2016-6662 (i.e., SQL injection vulnerability of the MySQL
server) to gain arbitrary code execution capabilities inside
the container. Generally, once the attacker gains control over
the container, we assume she will attack the Linux kernel to
attempt to escape the sandboxed environment, as this will
grant her the capability to control other containers and even
the kernel itself. To evaluate this scenario, we have used
the exploit for CVE-2017-5123 that was introduced into the
Linux kernel v4.13 to similate an attacker that attempts to
escape the container. In this context, first, we have repro-
duced the exploit of Chris Salls, the discoverer of CVE-2017-
5123, to bypass KASLR [52]. As our container was initially

11

not bound by seccomp (and hence did not block unautho-
rized system call invocations), we have abused the vulnerable
waitid() system call to establish an arbitrary write primi-
tive into the kernel memory; by abusing the fact that the vul-
nerable waitid() system call handler missed the necessary
access_ok() checks (that prevent the user space argument
siginfo_t *infop from pointing to unauthorized memory),
we were able to write-access arbitrary kernel addresses. Since
the unsafe_put_user() (and other) kernel helper does not
crash the kernel when accessing invalid memory regions, we
were able to fingerprint the kernel’s address space to identify
its exact mapping [52], despite KASLR.

In the next step, similar to the original exploit, the gained
write primitive lent us the capability to perform the ret2dir
attack [34]. To achieve this, we identify a page within the ker-
nel’s physmap (i.e., a contiguous memory region that directly
maps a part of, or even all, physically available memory into
the kernel space) that is aliased with a user space page that
is controlled by us. Then, by injecting a fake data structure
(e.g., struct file) with function pointers that we can use to
initiate the execution a ROP gadgets inside the kernel, e.g., to
disable the systems Supervisor Mode Execution Prevention
(SMEP) and Supervisor Mode Access Prevention (SMAP)
protection and to grant sufficient privileges of the executing
container process. Once we receive sufficient privileges, we
become able, e.g., to request CAP_SYS_MODULE capabilities
which allow us to load kernel modules and thus fully control
the entire system.

Even though the attacker received strong capabilities that
allowed writing to arbitrary kernel memory, our seccomp
policy was able to eliminate the vulnerability. Note that the
Docker container did not require the vulnerable system call for
its genuine execution. As such, after applying the generated
seccomp policy to the container, seccomp successfully sup-
pressed the unauthorized invocation of the vulnerable system
call and immediately terminated the container.

7 Discussion

Add the following:
- syscall() system call
- self-modifying code etc. loading of new code
- assembly vs C-code vs calling conventions issues
- Function padding with zero vs nop instructions
- Discuss the benefit/disadvantages our your paper and how this can be increased
through additional library debloating mechanisms
- Discuss that the static analysis could have been performed, e.g., via LLVM
(see SLAKE paper (CCS’19))
- Discuss the Nibbler paper (ACSAC’19)

Identifying semantic properties of programs are generally
undecidable. Consequently, the employed abstract interpre-
tation of JESSE only approximates the results and, in some
cases, encounters its limits. These limits stem from both the
dynamic nature of program behavior and the implementation
deficits of our prototype, which we outline in the following.

Conditional branches: The implementation of the abstract

interpretation of JESSE does not differentiate between the
different branch targets to avoid having to determine the con-
ditions that are only determined at run time. Consequently, if
the rax content depended on a condition, our prototype would
not be able to determine its value. Interestingly, we have not
encountered any conditional assignments of the rax register
that preceeded a syscall instruction.

Generic system call wrappers: Further, the abstract inter-
pretation is currently limited to function-level analysis. While
this is sufficient for most system call invocations, there exist
functions that act as generic wrappers (e.g., the syscall()
function in libc) for arbitrary system calls, as they allow
to specify the system call number in one of the function pa-
rameters. Consequently, since the exact system call number
depends on the calling function, analyzing the syscall()
function alone, is insufficient to determine the provided sys-
tem call number. We counter this issue by, first, letting JESSE
inform us about the missing system call number identification,
and second, instead of identifying the value in the rax register
just before the syscall instruction, adjust the abstract inter-
pretation to identify (in the case of the syscall() function)
the value of the rdi register just before calling the syscall()
function. As this solution targets the syscall() function, a
generic solution would need to consider the register state that
is transferred between function calls.

System call numbers in memory: The introduced abstract
interpretation that associates system call numbers to identified
syscall instructions (§ 4) hinges on the premise that sys-
tem call numbers are passed as constants via the rax register,
and that they are neither arithmetically computed nor read
from memory. Instead, our abstract interpretation assumes
that the system call numbers are assigned and propagated
as constants, and never read from memory. The system call
number analysis becomes ineffective, as soon as this assump-
tion breaks. Fortunately, most system call numbers adhere
to our assumption. Yet, there exist exceptions that prove our
assumption. Specifically, certain functions receive the sys-
tem call numbers through memory. For instance, the signal
handler sighandler_setxid() in libpthread determines
whether to change the user or group id by reading the system
call number from a data structure in memory. In such cases,
JESSE informs and requests the analyst’s input to make an
informed decision.

Virtual Dynamic Shared Object: On Linux, the virtual Dy-
namic Shared Object (vDSO) is an architecture dependent,
shared library that is mapped into the address space of ev-
ery user-space process [13]. Generally, the vDSO increases
the performance of selected system calls by emulating their
functionality in user space; virtual system calls do not have to
switch into the kernel space to perform their task. While the
vDSO is practical, its architecture dependencies can introduce
difficulties to dynamically generated seccomp policies [20].
For instance, the time keeping system calls highly depend

12

on the program’s choice of the hardware’s clock source and
the system’s configuration [20]. In case, the vDSO (or rather
its virtual system call gettimeofday()) should not be in the
position to meet these demands, it will fall back to calling the
system call in kernel space. (Note that before Linux kernel
v5.3, the fall back called the 32-bit clock_gettime[64]()
system call [20].) This introduces an issue for both static and
dynamic approaches for generating seccomp policies. Static
approaches cannot analyze the vDSO (and hence miss sys-
tem calls that are invoked in the respective fall back paths of
virtual system calls). That is, even though the static anal-
ysis is able to extract the called virtual system call (e.g.,
gettimeofday()), it will not identify the system call num-
ber that will be potentially called on another system (e.g.,
clock_gettime[64]()). Similarly, dynamic approaches can
simply miss the system call numbers used in the fall back path
as the system could be differently configured on a different
machine. To address this issue, we have completely analyzed
the vDSO and by default authorize the execution of all system
calls that can be called by the vDSO.

Attack vector reduction: Even though seccomp effectively
contributes to reducing the system’s attack vectors, it will
not be able to completely diminish future attacks. As such,
JESSE (as the last line of defense) is most effective in combi-
nation with further security hardening measures. For instance,
when combined with accurate library code debloating mecha-
nisms [8, 48], JESSE would establish a highly restricted envi-
ronment, deprived of unnecessary and potentially threatening
gadgets and system calls.

8 Related Work

Mention Capsicum: https://www.usenix.org/legacy/event/sec10/tech/
full_papers/Watson.pdf

References: (1) Do we need something like Flowdroid [10] and Droidscope and
Droid*? (i) Look at CHEX, and COPES (and Flowdroid) (all referenced in the
sandbox mining paper) as they use static analysis techniques to establish rules
for sandboxes.
(2) mention container security [43] (i) Use [43] to find more related work!
(3) Reference "Improving host security with system call policies"
(4) Reference: [8] (5) Reference:

Goldberg et al. [28] inroduce Janus, one of the first sand-
boxed environments for untrusted applications. Janus lever-
ages the Solaris’ tracing capabilities to interpose and confine
system calls. With Boxify [11], Backes et al. establish a user-
space only framework that leverages the Android’s process
isolation features to execute apps in the context of a trusted
process with restricted permissions. Boxify further limits the
capabilities of untrusted applications by intercepting calls to
the Android API and system calls.

Gordon et al. [29] propose DroidSafe which models the
Android Application Programming Interface (API) and uses a
static analysis technique to find information leaks in Android
application. Similarily, Arzt et al. [10] develop FlowDroid, a
static taint analysis that does the same with a higher precision.

While these approaches implement the necessary means for
isolating and restraining individual applications, they lack the
ability to determine relevant permissions and system calls that
should be white-listed. As such, Jamrozik et al. [33] introduce
a novel technique, coined sandbox mining, to determine the
resources that are required by applications at run-time. In this
context, Jamrozik et al. present BOXMATE, a framework that
executes tests against target applications an Android to extract
the set of resources (including system calls) required during
the tests. This allows BOXMATE to limit the applications to the
gathered resources. Instead of relying on general benchmark-
based tests, DroidBot [41] generates customized test-cases
that are leveraged by the framework of Le et a. [40], such that
the sandbox also consider parameters of calls to the Android
API. In a similar way, Wan et al. [56] mine sandboxes for
Linux containers. Specifically, the authors leverage dynamic
analysis techniques to determine which system calls are called
by programs inside of the container. After that, they leverage
seccomp to blacklist all system calls not found during the
analysis phase. Although they do not find any false positives
in their evaluation, their analysis misses some system calls
XXXXXX.

Another approach is to debloat containers. Rastogi et
al. [50, 51] develop Cimplifier, a tool that partitions an input
container into multiple, minimal output containers. When the
input container only runs one main program, this reduces to
the removal of all unused programs in the container’s filesys-
tem. The difference between the two papers is the analysis
method. In the first paper, Rastogi et al. use dynamic analysis
techniques to find out which programs run in the container and
in the second paper, they switch to static analysis procedures.

In addition to debloating containers, it is also possible to
debloat programs. In this case the goal is to remove dead code
that is introduced through loaded libraries. Quach et al. [48]
implement a static analysis technique that finds out which
instructions in the libraries are to dead code. After that, they
prevent these parts of the binaries from loading. However, this
approach requires the recompiliation of the analyzed binaries
with clang, because they run their analysis on the LLVM
IR representation of the programs and libraries. Agadakos et
al. [8] extend the work of Quach et al. by developing Nibbler,
a library debloating tool that is able to debloat libraries on a
binary level, i.e., a recompilation of the analyzed binaries is
not necessary. But, they require all ELF symbols tables and
thus, unstripped binaries.

Although, this reduces the code size significantly, it cannot
remove code that is not executed due to disabled features
in the configuration, because such code is only dead in the
current configuration but not in general. As such, Koo et
al. [38] develop a configuration-driven software debloating
technique that overcomes this limitation by analyzing which
included libraries are only used to provide one specific feature
and removing these libraries when the feature is disabled.

The problem with debloating approaches is that they cannot

13

https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf
https://www.usenix.org/legacy/event/sec10/tech/full_papers/Watson.pdf

defend against injected, malicious code. Once an adversary
is able to run her own programs inside of the container, the
defences are useless, because she is not required to reuse
existing programs anymore.

- shradder paper

9 Conclusion

References

[1] BSD Jails. https://www.freebsd.org/doc/
handbook/jails.html.

[2] Docker. [Online; accessed 12-September-2018].

[3] docker hub. [Online; accessed 19-May-2019].

[4] Infrastructure for Container Projects – LXC. https:
//linuxcontainers.org/lxc/introduction/.

[5] Oracle Solaris Zones. https://docs.oracle.com/
cd/E18440_01/doc.111/e18415/chapter_zones.
htm.

[6] Source code of docker. [Online; accessed 18-October-
2019].

[7] Source code of the linux kernel. [Online; accessed 18-
October-2019].

[8] Ioannis Agadakos, Di Jin, David Williams-King,
Vasileios P. Kemerlis, and Georgios Portokalidis. Nib-
bler: Debloating Binary Shared Libraries. In Annual
Computer Security Applications Conference (ACSAC),
2019.

[9] Angr. Angr documentation. https://docs.angr.io,
2020.

[10] Steven Arzt, Siegfried Rasthofer, Christian Fritz,
Eric Bodden, Alexandre Bartel, Jacques Klein, Yves
Le Traon, Damien Octeau, and Patrick McDaniel. Flow-
droid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps. Acm
Sigplan Notices, 49(6):259–269, 2014.

[11] Michael Backes, Sven Bugiel, Christian Hammer, Oliver
Schranz, and Philipp von Styp-Rekowsky. Boxify: Full-
fledged App Sandboxing for Stock Android. In USENIX
Security Symposium, 2015.

[12] Jean-Tiare Le Bigot. How I shrunk a
Docker image by 98.8% – featuring fanotify.
https://blog.yadutaf.fr/2015/04/25/
how-i-shrunk-a-docker-image-by-98-8-featuring-fanotify/,
2015. [Online; accessed 12-January-2020].

[13] Daniel Pierre Bovet. Implementing Virtual System Calls,
2014.

[14] Neil Brown. Control groups series by Neil Brown.
https://lwn.net/Articles/604609/, July 2014.

[15] Quan Chen, Ahmed M. Azab, Guruprasad Ganesh, and
Peng Ning. PrivWatcher: Non-bypassable Monitoring
and Protection of Process Credentials from Memory
Corruption Attacks. In ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
2017.

[16] Corbet. A Bid to Resurrect Linux Capabilities. https:
//lwn.net/Articles/199004/, September 2006.

[17] Jonathan Corbet. Seccomp and Sandboxing, 2009. [On-
line; accessed 17-October-2019].

[18] Jonathan Corbet. Supervisor Mode Access Preven-
tion. https://lwn.net/Articles/517475/, October
2012.

[19] Jonathan Corbet. Yet another new approach to seccomp,
2012. [Online; accessed 17-October-2019].

[20] Jonathan Corbet. vDSO, 32-bit Time, and Seccomp,
2019.

[21] Patrick Cousot and Radhia Cousot. Abstract interpre-
tation: a unified lattice model for static analysis of pro-
grams by construction or approximation of fixpoints. In
Proceedings of the 4th ACM SIGACT-SIGPLAN sympo-
sium on Principles of programming languages, pages
238–252. ACM, 1977.

[22] National Vulnerability Database. CVE-2016-
8655. https://nvd.nist.gov/vuln/detail/
CVE-2016-8655, 2016.

[23] National Vulnerability Database. CVE-2017-
7308. https://nvd.nist.gov/vuln/detail/
CVE-2017-7308, 2017.

[24] DockerSlim. Minify and Secure Docker contain-
ers (free and open source!). https://github.com/
docker-slim/docker-slim. [Online; accessed 12-
January-2020].

[25] Jake Edge. Kernel Address Space Layout Randomiza-
tion. https://lwn.net/Articles/569635/, October
2013.

[26] Jake Edge. Inheriting Capabilities. https://lwn.net/
Articles/632520/, Februar 2015.

[27] Alexis Engelke. Lightweight disassembler. https:
//github.com/aengelke/lwdpy, 2017. [Online; ac-
cessed 05-August-2018].

14

https://www.freebsd.org/doc/handbook/jails.html
https://www.freebsd.org/doc/handbook/jails.html
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxc/introduction/
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm
https://docs.angr.io
https://blog.yadutaf.fr/2015/04/25/how-i-shrunk-a-docker-image-by-98-8-featuring-fanotify/
https://blog.yadutaf.fr/2015/04/25/how-i-shrunk-a-docker-image-by-98-8-featuring-fanotify/
https://lwn.net/Articles/604609/
https://lwn.net/Articles/199004/
https://lwn.net/Articles/199004/
https://lwn.net/Articles/517475/
https://nvd.nist.gov/vuln/detail/CVE-2016-8655
https://nvd.nist.gov/vuln/detail/CVE-2016-8655
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://nvd.nist.gov/vuln/detail/CVE-2017-7308
https://github.com/docker-slim/docker-slim
https://github.com/docker-slim/docker-slim
https://lwn.net/Articles/569635/
https://lwn.net/Articles/632520/
https://lwn.net/Articles/632520/
https://github.com/aengelke/lwdpy
https://github.com/aengelke/lwdpy

[28] Ian Goldberg, David Wagner, Randi Thomas, Eric A
Brewer, et al. A Secure Environment for Untrusted
Helper Applications: Confining the Wily Hacker. In
USENIX Security Symposium, 1996.

[29] Michael I Gordon, Deokhwan Kim, Jeff H Perkins,
Limei Gilham, Nguyen Nguyen, and Martin C Rinard.
Information flow analysis of android applications in
droidsafe. In ISOC Network and Distributed System
Security Symposium (NDSS), 2015.

[30] Red Hat. CVE-2017-5123. https://access.redhat.
com/security/cve/cve-2017-5123, 2017.

[31] Hubicka, Jan and Jaeger, Andreas and Matz, Michael
and Mitchell, Mark. System V Application Binary Inter-
face AMD64 Architecture Processor Supplement. 2013.

[32] Intel Corporation. Intel 64 and IA-32 Architectures
Software Developer’s Manual, Combined Volumes: 1,
2A, 2B, 2C, 3A, 3B, 3C, 3D, and 4. 2019.

[33] Konrad Jamrozik, Philipp von Styp-Rekowsky, and An-
dreas Zeller. Mining sandboxes. In International Con-
ference on Software Engineering (ICSE), 2016.

[34] Vasileios P. Kemerlis, Michalis Polychronakis, and An-
gelos D. Keromytis. ret2dir: Rethinking Kernel Isola-
tion. In USENIX Security Symposium, 2014.

[35] Michael Kerrisk. Namespaces in Operation, Part
1: Namespaces Overview. https://lwn.net/
Articles/531114/, January 2013.

[36] Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida,
and Elias Athanasopoulos. No Need to Hide: Protect-
ing Safe Regions on Commodity Hardware. In ACM
European Conference on Computer Systems (EuroSys),
2017.

[37] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis
Polychronakis. Configuration-Driven Software Debloat-
ing. In European Workshop on System Security (Eu-
roSec), 2019.

[38] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis
Polychronakis. Configuration-driven software debloat-
ing. In Proceedings of the 12th European Workshop on
Systems Security, page 9. ACM, 2019.

[39] Aneesh Kumar. Auditing your Docker in-
stance down to a ‘Bare Necessity’ foot-
print. https://medium.com/codefish/
working-with-dockers-64c8bc4b5f92#
.f3i10qkyt, 2015. [Online; accessed 12-January-
2020].

[40] Tien-Duy B Le, Lingfeng Bao, David Lo, Debin Gao,
and Li Li. Towards Mining Comprehensive Android
Sandboxes. In International Conference on Engineering
of Complex Computer Systems (ICECCS), 2018.

[41] Yuanchun Li, Ziyue Yang, Yao Guo, and Xiangqun Chen.
DroidBot: A Lightweight UI-guided Test Input Gener-
ator for Android. In International Conference on Soft-
ware Engineering Companion (ICSE-C), 2017.

[42] Siarhei Liakh. NX Protection for Kernel Data. https:
//lwn.net/Articles/342266/, July 2009.

[43] Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun
Sun, and Quan Zhou. A Measurement Study on Linux
Container Security: Attacks and Countermeasures. In
Annual Computer Security Applications Conference
(ACSAC), 2018.

[44] Yutao Liu, Tianyu Zhou, Kexin Chen, Haibo Chen, and
Yubin Xia. Thwarting Memory Disclosure with Efficient
Hypervisor-Enforced Intra-Domain Isolation. In ACM
Conference on Computer and Communications Security
(CCS), 2015.

[45] David Mosberger and Tai Jin. httperf — A Tool for Mea-
suring Web Server Performance. In ACM SIGMETRICS
Performance Evaluation Review, 1998.

[46] Sergej Proskurin, Marius Momeu, Seyedhamed Ghavam-
nia, Vasileios P. Kemerlis, and Michalis Polychronakis.
xMP: Selective Memory Protection for Kernel and User
Space. In IEEE Symposium on Security and Privacy
(S&P), 2020.

[47] Niels Provos. Improving Host Security with System
Call Policies. In USENIX Security Symposium, 2003.

[48] Anh Quach, Aravind Prakash, and Lok Yan. Debloating
Software through Piece-wise Compilation and Loading.
In USENIX Security Symposium, 2018.

[49] Radare2. Libre and Portable Reverse Engineering
Framework. https://rada.re/n/, 2020.

[50] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli,
Somesh Jha, and Patrick McDaniel. Cimplifier: auto-
matically debloating containers. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software
Engineering, pages 476–486. ACM, 2017.

[51] Vaibhav Rastogi, Chaitra Niddodi, Sibin Mohan, and
Somesh Jha. New directions for container debloating.
In Proceedings of the 2017 Workshop on Forming an
Ecosystem Around Software Transformation, pages 51–
56. ACM, 2017.

15

https://access.redhat.com/security/cve/cve-2017-5123
https://access.redhat.com/security/cve/cve-2017-5123
https://lwn.net/Articles/531114/
https://lwn.net/Articles/531114/
https://medium.com/codefish/working-with-dockers-64c8bc4b5f92#.f3i10qkyt
https://medium.com/codefish/working-with-dockers-64c8bc4b5f92#.f3i10qkyt
https://medium.com/codefish/working-with-dockers-64c8bc4b5f92#.f3i10qkyt
https://lwn.net/Articles/342266/
https://lwn.net/Articles/342266/
https://rada.re/n/

[52] Chris Salls. Exploiting CVE-2017-5123
with full protections. SMEP, SMAP, and the
Chrome Sandbox! https://salls.github.io/
Linux-Kernel-CVE-2017-5123, 2017.

[53] Yan Shoshitaishvili, Ruoyu Wang, Christophe Hauser,
Christopher Kruegel, and Giovanni Vigna. Firmalice
— Automatic Detection of Authentication Bypass Vul-
nerabilities in Binary Firmware. In ISOC Network and
Distributed System Security Symposium (NDSS), 2015.

[54] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Audrey Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis. 2016.

[55] Nick Stephens, John Grosen, Christopher Salls, Audrey
Dutcher, Ruoyu Wang, Jacopo Corbetta, Yan Shoshi-
taishvili, Christopher Kruegel, and Giovanni Vigna.

Driller: Augmenting Fuzzing Through Selective Sym-
bolic Execution. In ISOC Network and Distributed
System Security Symposium (NDSS), 2016.

[56] Zhiyuan Wan, David Lo, Xin Xia, Liang Cai, and Shan-
ping Li. Mining sandboxes for Linux Containers. In
IEEE International Conference on Software Testing, Ver-
ification and Validation (ICST), 2017.

[57] Fenghua Yu. Enable/Disable Supervisor Mode Execu-
tion Protection. https://goo.gl/utKHno, May 2011.

[58] Z3. Z3 documentation. https://github.com/
Z3Prover/z3/wiki/Documentation, 2020.

[59] Matteo Zanioli and Agostino Cortesi. Information leak-
age analysis by abstract interpretation. In International
Conference on Current Trends in Theory and Practice

of Computer Science, pages 545–557. Springer, 2011.

16

https://salls.github.io/Linux-Kernel-CVE-2017-5123
https://salls.github.io/Linux-Kernel-CVE-2017-5123
https://goo.gl/utKHno
https://github.com/Z3Prover/z3/wiki/Documentation
https://github.com/Z3Prover/z3/wiki/Documentation

	Introduction
	Background
	Linux Secure Computing Mode
	Abstract Interpretation

	Threat Model
	System Call Number Analysis
	Control-Flow Graph Construction
	System Call Number Identification
	Defining the Lattice
	Defining the Interpretation Function
	Applying Abstract Interpretation

	Refining the Seccomp Policy for Docker
	Dissecting Docker Containers
	Avoiding Unreachable Code
	Identifying System Calls

	Evaluation
	Precision Evaluation
	Abstract Interpretation
	Avoiding Unreachable Code

	Benefits and Pitfalls of Dynamic Analysis
	Security Evaluation

	Discussion
	Related Work
	Conclusion

